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Introduction
This report describes a work in progress (see Del Debbio, Giani, and Wilson 2022) to

reimplement the parton distribution functions (PDF) fit of the Neural Network PDF

(NNPDF) group using Gaussian processes. Our goals are:

• Mathematically legible assumptions, motivated by the difficulties in interpret-

ing the neural network model.

• Interpretable uncertainty quantification that accounts at once for all sources of

error, motivated by the doubts of the community on the final quoted fit error,

which enters as an important component in many experimental measurements.

• A computationally faster fitting procedure.

These qualities together would produce both clearer results and, perhaps even more

importantly, allow faster iteration and improvement of the model. Our strategy is

trying to build a single coherent Bayesian inference. A natural technical choice for

the distribution over the unknown PDF functions is Gaussian processes. Previous

attempts at the analysis with Bayesian inference are Aggarwal et al. (2022), Gbedo

and Mangin-Brinet (2017), and Mangin-Brinet and Gbedo (2017).

In what follows we briefly recap PDFs and Gaussian process regression for what

concerns our needs, and then describe in turn progressively more sophisticated mod-

els.
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1 PDFs
We work in the DGLAP evolution basis, so the 9 PDF functions (0, 1] → (−∞,∞) are

Σ 𝑉 𝑉3 𝑉8 𝑉15 𝑇3 𝑇8 𝑇15 𝑔. (1)

We have excluded the bottom and top quarks because their contribution to the proton

is negligible given their large mass, and the photon because yes. These are related to

the flavor basis by I don’t know why the pho-
ton does not enter. Is it be-
cause it has low momen-
tum?

𝑞− = 𝑞 − �̄� 𝑞+ = 𝑞 + �̄�

𝑉 = ∑
𝑞
𝑞− Σ = ∑

𝑞
𝑞+, 𝑞 ∈ {𝑑, 𝑢, 𝑠, 𝑐}

𝑉3 = 𝑢− − 𝑑− 𝑇3 = 𝑢+ − 𝑑+
𝑉8 = 𝑢− + 𝑑− − 2𝑠− 𝑇8 = 𝑢+ + 𝑑+ − 2𝑠+
𝑉15 = 𝑢− + 𝑑− + 𝑠− − 3𝑐− 𝑇15 = 𝑢+ + 𝑑+ + 𝑠+ − 3𝑐+. (2)

See eko.readthedocs.io/en/latest/theory/FlavorSpace.

The total momentum constraint is

∫
1

0
d𝑥 𝑥

(
∑
𝑞
𝑞(𝑥) +∑

𝑞
�̄�(𝑥) + 𝑔(𝑥)

)
= 1, (3)

while the flavor constraints are

∫
1

0
d𝑥 (𝑞(𝑥) − �̄�(𝑥)) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

2 𝑞 = 𝑢
1 𝑞 = 𝑑
0 𝑞 ∉ {𝑢, 𝑑},

(4)

and finally all functions must be zero for 𝑥 = 1 due to the no single carrier constraint.

Translated to the evolution basis, the constraints become

∫
1

0
d𝑥 𝑥(Σ(𝑥) + 𝑔(𝑥)) = 1 Σ(1) = 𝑔(1) = 0

∫
1

0
d𝑥 𝑉 (𝑥) = 3 𝑉 (1) = 0

∫
1

0
d𝑥 𝑉3(𝑥) = 1 𝑉3(1) = 𝑇3(1) = 0

∫
1

0
d𝑥 𝑉8(𝑥) = 3 𝑉8(1) = 𝑇8(1) = 0

∫
1

0
d𝑥 𝑉15(𝑥) = 3 𝑉15(1) = 𝑇15(1) = 0. (5)

Additionally, as “soft hypotheses,” we expect Σ and 𝑔 to follow a power law with

negative exponent ≈ −1 as 𝑥 → 0+, and all the functions to vary arbitrarily quickly

as 𝑥 → 0+. We also conjecture that the functions are nonnegative. Is the proof of the posivity
confirmed?
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2 Data
Most of the DIS data has a linear relationship with PDFs. In the abstract, for each

quantity to be measured 𝑦𝑖, calling 𝑓𝑗 the PDFs, we have

𝑦𝑖 = ∑
𝑗
∫

1

0
d𝑥 𝐹𝑖𝑗 (𝑥)𝑓𝑗 (𝑥). (6)

The operator coefficients 𝐹𝑖𝑗 (𝑥) are computed with a numerical approximation of DGLAP

on a fixed grid of 𝑥 values. Approximately, this grid is made up of 34 log-spaced values

from 2×10−7 to 0.11, and 17 linearly spaced values from 0.11 to 1. Thus the expression

we use in practice is

𝑦𝑖 = ∑
𝑗𝑘

𝐹𝑖𝑗𝑘𝑓𝑗 (𝑥𝑘). (7)

The 𝐹𝑖𝑗𝑘 tensors are called “FK tables.” The calculation of these matrices is not exact,

so we have estimates 𝐹 with their own uncertainty. The covariance matrix of 𝐹 |𝐹 is

in principle a huge six axes tensor, however it is extremely degenerate with effective

rank about 10. So the error distribution can be conveniently expressed by combining

some eigenvectors 𝐹 (𝑙)
of the covariance tensor with Normal coefficients. Actually I

suspect that the current degeneracy is an artifact of the computational method and is

not substantial, but even if this was the case, I would expect anyway a quite degenerate

spectrum.

Other data depends on simple nonlinear transformations of the kind

𝑦𝑖 = ℎ
(
∑
𝑘
𝐹𝑖1𝑘𝑓1(𝑥𝑘),∑

𝑘
𝐹𝑖2𝑘𝑓2(𝑥𝑘),…)

(8)

while yet other data has a quadratic dependence:

𝑦𝑖 = ∑
𝑖𝑗𝑘𝑙

𝐹𝑗𝑘𝑙𝑓𝑗 (𝑥𝑘)𝑓𝑗 (𝑥𝑙). (9)

The distributions of the data measurements �̂� |𝑦 are mostly Normal with a dense

covariance matrix, plus a small amount of Poisson data. The number of Normal data-

points is about 4500 total, of which 3000 linear. The relative errors are typically 2–10 %,

with some exceptions down to 0.1 % and up to 50 %.

3 Gaussian process regression
For textbooks on the topic, see Gramacy (2020), Murphy (2023), Rasmussen and Williams

(2006), Stein (1999), and Wendland (2004).

3.1 Definition of GP
We say a stochastic process 𝑓 is a Gaussian process with mean function 𝑚(𝑥) and

covariance function or kernel 𝑘(𝑥, 𝑥′), and write

𝑓 ∼ (𝑚, 𝑘), (10)
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where 𝑚 and 𝑘 have domain respectively  and  ×  for some arbitrary index set

 , if for any finite collection of points 𝐱 ∈ 𝑛
, the vector 𝑓 (𝐱) = (𝑓 (𝑥1),… , 𝑓 (𝑥𝑛)) is

Normally distributed as

𝑓 (𝐱) ∼  (𝑚(𝐱), 𝑘(𝐱, 𝐱⊤)), (11)

where 𝑚(𝐱) = (𝑚(𝑥1),… , 𝑚(𝑥𝑛)) and

𝑘(𝐱, 𝐱⊤) =
⎛
⎜
⎜
⎝

𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑛)
⋮ ⋱ ⋮

𝑘(𝑥𝑛, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

⎞
⎟
⎟
⎠
. (12)

In particular this means that 𝐸[𝑓 (𝑥)] = 𝑚(𝑥) and Cov[𝑓 (𝑥), 𝑓 (𝑥′)] = 𝑘(𝑥, 𝑥′).
A degenerate Normal density, i.e., a Normal distribution defined on a subspace,

can be written with the pseudoinverse of the covariance matrix (see section A.1) as

 (𝐲;𝝁,Σ) =
1√

pdet(2𝜋Σ)
exp(−

1
2
(𝐲 − 𝝁)⊤Σ−(𝐲 − 𝝁)) , (13)

with 𝐲 − 𝝁 = ΣΣ+(𝐲 − 𝝁),

where pdet is the pseudodeterminant, i.e., the product of the nonzero eigenvalues.

Since pseudoinversion and rotation commute, this formula gives the density written

with the projected quantities. To write the density in the full space, add a Dirac delta

term 𝛿((𝐼 − ΣΣ+)(𝐲 − 𝝁)) for the subspace constraint.

3.2 Inference
We use a Gaussian process as prior distribution over an unknown function for Bayesian

inference. Following the notation of Rasmussen and Williams (2006), let 𝐱 be the in-

dices of datapoints, where we know the function values 𝑓 (𝐱) = 𝐲. Let 𝐱∗ be the “test

points,” the indices where we want to know the value of the function. For example,

often 𝐱∗ is a finely spaced grid used to draw the function.

Consider the prior covariance matrix of 𝑓 ((𝐱, 𝐱∗)), divided in blocks in the follow-

ing way:

𝑘((𝐱, 𝐱∗), (𝐱, 𝐱∗)⊤) = (
𝑘(𝐱, 𝐱⊤) 𝑘(𝐱, 𝐱∗⊤)
𝑘(𝐱∗, 𝐱⊤) 𝑘(𝐱∗, 𝐱∗⊤)) = (

Σ𝑥𝑥 Σ𝑥𝑥∗

Σ𝑥∗𝑥 Σ𝑥∗𝑥∗)
. (14)

In terms of these blocks, the posterior distribution of the function values at the test

points has this simple form:

𝑓 (𝐱∗) ∣ 𝑓 (𝐱) = 𝐲 ∼  (𝑚(𝐱∗) + Σ𝑥∗𝑥Σ−
𝑥𝑥(𝐲 − 𝑚(𝐱)),

Σ𝑥∗𝑥∗ − Σ𝑥∗𝑥Σ−
𝑥𝑥Σ𝑥𝑥∗), (15)

where Σ−
𝑥𝑥 is any generalized inverse of Σ𝑥𝑥 , in particular, Σ+

𝑥𝑥 is a valid choice (see

section A.1). For the proof, see Schott (2017, ex. 7.4, p. 295).
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3.3 Properties of the Normal distribution
The reason we need to evaluate the kernel only on the finite set of points we are

dealing with, despite considering a distribution over an infinite dimensional space, is

because of the property of multivariate Normal distributions that the marginal distri-

butions are still Normal. In general the useful properties of the Normal distribution

are:

Conditioning If

(
𝐲
𝐳) ∼  ((

𝝁𝑦
𝝁𝑧)

,(
Σ𝑦𝑦 Σ𝑦𝑧
Σ𝑧𝑦 Σ𝑧𝑧)) , (16)

then 𝐳 ∣ 𝐲 ∼  (𝝁𝑧+Σ𝑧𝑦Σ−
𝑦𝑦(𝐲−𝝁𝑦),Σ𝑧𝑧−Σ𝑧𝑦Σ−

𝑦𝑦Σ𝑦𝑧). This also implies Cov[𝐚, 𝐛 ∣
𝐜] = Σ𝑎𝑏 − Σ𝑎𝑐Σ−

𝑐𝑐Σ𝑐𝑏.

Linearity If 𝐲 ∼  (𝝁,Σ) and 𝐳 = 𝐴𝐲, then 𝐳 ∼  (𝐴𝝁, 𝐴Σ𝐴⊤).

Marginalization As a particular case of linearity, if 𝐲 ∼  (𝝁,Σ), then

⎛
⎜
⎜
⎝

𝑦𝑖1
⋮
𝑦𝑖𝑛

⎞
⎟
⎟
⎠
∼ 

⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

𝜇𝑖1
⋮
𝜇𝑖𝑛

⎞
⎟
⎟
⎠
,
⎛
⎜
⎜
⎝

Σ𝑖1 ,𝑖1 ⋯ Σ𝑖1 ,𝑖𝑛
⋮ ⋱ ⋮

Σ𝑖𝑛 ,𝑖1 ⋯ Σ𝑖𝑛 ,𝑖𝑛

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠
. (17)

Linearity is valid also for linear operators (Fourier, Mellin, etc.) on the Gaussian

process. In particular Cov[𝑓 ′(𝑥), 𝑓 (𝑥′)] = 𝜕𝑥𝑘(𝑥, 𝑥′). We will make use of this to

implement the integral constraints.

For a textbook reference on the multivariate Normal, see Tong (1990).

3.4 Hyperparameters
Usually the kernel and the mean function depend on some parameters 𝜃, the “hyper-

parameters.” A maximum likelihood estimate of 𝜃 can be obtained by maximizing the

likelihood of 𝑓 (𝐱):

�̂�ML = argmax
𝜃

 (𝐲;𝑚(𝐱; 𝜃),Σ𝑥𝑥(𝜃)) =

= argmin
𝜃

(log pdet Σ𝑥𝑥(𝜃) + (𝐲 − 𝑚(𝐱; 𝜃))⊤Σ+
𝑥𝑥(𝜃)(𝐲 − 𝑚(𝐱; 𝜃))) , (18)

where care must be taken that the rank of Σ𝑥𝑥(𝜃) is fixed, and 𝐲−𝑚(𝐱; 𝜃) stays in the

range of Σ𝑥𝑥(𝜃) for any value of 𝜃. If the latter condition does not hold, the expression

as written projects 𝐲 − 𝑚(𝐱; 𝜃) on the support of the distribution.

Once we have �̂�ML, we can plug its value into the GP and use Equation 15. However

we are more interested in a fully Bayesian model where 𝜃 has its own prior:

𝑓 ∣ 𝜃 ∼ (𝑚(⋅; 𝜃), 𝑘(⋅, ⋅; 𝜃)), 𝜃 ∼ 𝑝𝜃. (19)

In this case we get the posterior distributions

𝑝(𝜃 ∣ 𝐟(𝐱) = 𝐲) ∝ 𝑝(𝑓 (𝐱) = 𝐲 ∣ 𝜃)𝑝𝜃(𝜃),
𝑝(𝑓 (𝐱∗) = 𝐲∗, 𝜃 ∣ 𝑓 (𝐱) = 𝐲) = 𝑝(𝑓 (𝐱∗) = 𝐲∗ ∣ 𝑓 (𝐱) = 𝐲, 𝜃)𝑝(𝜃 ∣ 𝐟(𝐱) = 𝐲), (20)
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where the first line follows from Bayes’ theorem and the second from the law of joint

probability (a.k.a. the definition of conditional probability).

3.5 Kernels
The choice of kernel is very important, while typically the mean function is fixed to

a constant. The kernel must define a positive definite operator, and it determines the

smoothness of the function and the correlation length of the prior. The most known

kernel is the “exponential quadratic”

𝑘(𝑥, 𝑥′) = exp(−
1
2
‖𝑥 − 𝑥′‖2) . (21)

For other kernels, see Rasmussen and Williams (2006) or https://gattocrucco.

github.io/lsqfitgp/docs/kernelsref.html. Typically kernels are constructed

starting from basic known kernels using the following properties:

Linearity Let 𝐿 be a linear operator acting on vectors indexed by . Then 𝐿𝑥𝐿𝑥′𝑘(𝑥, 𝑥′)
is a valid kernel.

Reindexing Since 𝑥 is just an index from the point of view of the GP, it can be

transformed arbitrarily, so �̃�(𝑥, 𝑥′) = 𝑘(𝑇 (𝑥), 𝑇 (𝑥′)) is a valid kernel.

Product Like the Hadamard product of two p.d. matrices is p.d., the product of two

kernels is a kernel. To see this quickly, consider that if 𝐸[𝑓 (𝑥)] = 𝐸[𝑔(𝑥)] = 0
and 𝑓 ⫫ 𝑔 , thenCov[𝑓 (𝑥)𝑔(𝑥), 𝑓 (𝑥′)𝑔(𝑥′)] = Cov[𝑓 (𝑥), 𝑓 (𝑥′)] Cov[𝑔(𝑥), 𝑔(𝑥′)].

To make the properties more legible, we expand them into a less minimal list of

allowed operations on kernels/processes:

1. The sum of two kernels is a kernel.

2. The product of two kernels is a kernel.

3. You can add a nonnegative constant to a kernel.

4. You can transform the input space of the kernel.

5. You can change the variance of the kernel with 𝑓 (𝑥)𝑘(𝑥, 𝑥′)𝑓 (𝑥′).

6. A kernel raised to a nonnegative integer power is a kernel. Kernels which allow

real exponents are called “infinitely divisible.”

7. A power series with nonnegative coefficients which converges on the range of a

kernel can be applied to it to get another kernel. Valid also for multiple kernels.

Example: exp(𝑘(𝑥, 𝑥′)).

8. 𝜕𝑥𝜕𝑥′𝑘(𝑥, 𝑥′) is the kernel of the derivative of the process.

9. In general all the properties apply to multiple processes or to processes with

values in ℝ𝑑
by adding an index axis that selects the process. Example: 𝑓 (𝑥) ∈

ℝ2
can be represented with the extended index �̃� = (𝑥, 𝑖), 𝑖 = 1, 2, 𝑓 (�̃�) = 𝑓𝑖(𝑥).

In these cases the kernel evaluated as 𝑘((𝑥, 1), (𝑥′, 2)) is called the “cross kernel

between 𝑓1 and 𝑓2.”

7
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3.6 Equivalence with linear regression
The inference with GPs can be written as a linear regression by diagonalizing the co-

variance operator. Let {𝜙𝑖(𝑥)} be a complete orthonormal set that diagonalizes 𝑘(𝑥, 𝑥′):

𝑘(𝑥, 𝑥′) = ∑
𝑖
𝜆𝑖𝜙𝑖(𝑥)𝜙𝑖(𝑥′). (22)

In this context this is known as Mercer’s theorem. By linearity, if we take a collection

of i.i.d. Normally distributed variables 𝛽𝑖, then the process

𝑓 (𝑥) = ∑
𝑖

√
𝜆𝑖𝜙𝑖(𝑥)𝛽𝑖 (23)

is a Gaussian process with the given covariance function 𝑘 and mean zero. We define

𝑋𝑗𝑖 =
√
𝜆𝑖𝜙𝑖(𝑥𝑗 ), (24)

such that the process evaluated on the data points becomes the linear regression equa-

tion

𝑓 (𝐱) = 𝑋𝜷, (25)

where 𝜷 has a prior mean zero and prior diagonal covariance matrix Cov[𝜷] = 𝐼 .
To make inference given 𝑓 (𝐱) = 𝐲, first we write the posterior distribution for 𝜷:

Cov[𝑋𝜷] = 𝑋𝑋⊤, 𝐸[𝜷 ∣ 𝑋𝜷 = 𝐲] = 𝑋⊤(𝑋𝑋⊤)+𝐲 = 𝑋+𝐲,
Cov[𝜷, 𝑋𝜷] = 𝑋⊤, Cov[𝜷 ∣ 𝑋𝜷 = 𝐲] = 𝐼 − 𝑋⊤(𝑋𝑋⊤)+𝑋 = 𝐼 − 𝑋+𝑋. (26)

This result can be obtained either with the conditioning formulas or directly on the

Normal density by regularizing the Dirac delta, completing the squares and using

one of the matrix identities from section A.2. Then we get the posterior on 𝑓 (𝐱∗) by

plugging the one for 𝜷 into Equation 23:

𝑋 ∗
𝑗𝑖 = 𝜙𝑖(𝑥∗𝑗 ), 𝑓 (𝐱∗) = 𝑋 ∗𝜷,

𝐸[𝑓 (𝐱∗) ∣ 𝑓 (𝐱) = 𝐲] = 𝑋 ∗𝐸[𝜷 ∣ 𝑓 (𝐱) = 𝐲] =
= 𝑋 ∗𝑋⊤(𝑋𝑋⊤)+𝐲,

Cov[𝑓 (𝐱∗) ∣ 𝑓 (𝐱) = 𝐲] = 𝑋 ∗ Cov[𝜷 ∣ 𝑓 (𝐱) = 𝐲]𝑋 ∗⊤ =
= 𝑋 ∗𝑋 ∗⊤ − 𝑋 ∗𝑋⊤(𝑋𝑋⊤)+𝑋𝑋 ∗⊤. (27)

Since

Σ𝑥∗𝑥∗ = Cov[𝑋 ∗𝜷] = 𝑋 ∗𝑋 ∗⊤,
Σ𝑥∗𝑥 = Cov[𝑋 ∗𝜷, 𝑋𝜷] = 𝑋 ∗𝑋⊤,
Σ𝑥𝑥 = Cov[𝑋𝜷] = 𝑋𝑋⊤, (28)

Equation 27 leads again to Equation 15.
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3.7 Error propagation
Consider the linear regression problem written with a separate error term

𝐲 = 𝑋𝜷 + 𝜺, Cov[𝜷] = Λ, Cov[𝜺] = 𝑉 , Cov[𝜷, 𝜺] = 𝐸[𝜷] = 𝐸[𝜺] = 0, (29)

which can be brought back to the form in section 3.6 with the substitutions 𝜷′ = (𝜷, 𝜺)
and 𝑋 ′ = (𝑋, 𝐼 ). Normal distributions are assumed throughout. The posterior on 𝜷
given 𝐲 = �̄� is

𝐸[𝜷 ∣ �̄�] = Cov[𝜷, 𝐲] Cov[𝐲]+�̄� = Cov[𝜷 ∣ �̄�] = Cov[𝜷] − Cov[𝜷, 𝐲] Cov[𝐲]+ Cov[𝐲,𝜷] =
= Λ𝑋⊤(𝑋Λ𝑋⊤ + 𝑉 )+�̄� = = Λ − Λ𝑋⊤(𝑋Λ𝑋⊤ + 𝑉 )+𝑋Λ =
= (𝑋⊤𝑉 −1𝑋 + Λ−1)−1𝑋⊤𝑉 −1�̄�, = (𝑋⊤𝑉 −1𝑋 + Λ−1)−1, (30)

where the form in the last line is obtained with the identities in section A.2, under

the assumption of invertible matrices, and is the most common way the solution is

written since it is convenient to compute when 𝑉 is diagonal and 𝜷 is shorter than 𝐲,

i.e., when the errors are uncorrelated and there are less parameters than datapoints.

A nice property of this posterior is that it can be interpreted as the prior distribu-

tion of a linear transformation �̃� of 𝐲 and 𝜷:

�̃��̄� = Λ𝑋⊤(𝑋Λ𝑋⊤ + 𝑉 )+(�̄� − 𝐲) + 𝜷,

𝐸[�̃��̄�] = 𝐸[𝜷 ∣ �̄�], Cov[�̃��̄�] = Cov[𝜷 ∣ �̄�], (31)

where the equalities of the moments can be checked with direct calculation, which

also shows that

Cov[�̃�,𝜷] = Cov[𝜷 ∣ �̄�], Cov[�̃�, 𝜺] = −Cov[𝜷 ∣ �̄�]𝑋⊤, Cov[�̃�, 𝐲] = 0, (32)

where for Cov[�̃�, 𝜺] we use the fact that ker(𝑋Λ𝑋⊤+𝑉 ) ⊆ ker(Λ𝑋⊤). The matrix that

enters in the definition of �̃� is the one that appears in 𝐸[𝜷 ∣ �̄�].
Due to linearity, the covariance matrix of �̃� can be decomposed as a sum which

separates the contribution of the two independent variables 𝜺 and 𝜷:

𝜕�̃�
𝜕𝜺⊤

= −Λ𝑋⊤(𝑋Λ𝑋⊤ + 𝑉 )+ =
𝜕�̃�
𝜕𝜷⊤ = 𝐼 − Λ𝑋⊤(𝑋Λ𝑋⊤ + 𝑉 )+𝑋 =

= −(𝑋⊤𝑉 −1𝑋 + Λ−1)−1𝑋⊤𝑉 −1, = (𝑋⊤𝑉 −1𝑋 + Λ−1)−1Λ−1, (33)

Cov[�̃�] =
𝜕�̃�
𝜕𝜺⊤

Cov[𝜺]
𝜕�̃�

⊤

𝜕𝜺
+

𝜕�̃�
𝜕𝜷⊤ Cov[𝜷]

𝜕�̃�
⊤

𝜕𝜷
=

= (𝑋⊤𝑉 −1𝑋 + Λ−1)−1(𝑋⊤𝑉 −1𝑋⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
from 𝜺

+ Λ−1
⏟⏞⏟⏞⏟

from 𝜷

)(𝑋⊤𝑉 −1𝑋 + Λ−1)−1. (34)

In this sense, the posterior covariance matrix of 𝜷 can be split in two components

attributed to different sources of uncertainty: in the usual application, the prior on
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the parameters and the error on the data. In general, if the regression is split in many

independent components, the posterior covariance matrix of one of the vectors can

be split analogously:

𝐲 = 𝑋𝜷 +∑
𝑖
𝜺𝑖, Cov[𝜺𝑖, 𝜺𝑗 ] = 𝛿𝑖𝑗𝑉𝑖, 𝑉 = ∑

𝑖
𝑉𝑖,

�̃� = Cov[𝜷, 𝐲] Cov[𝐲]+(�̄� − 𝐲) + 𝜷,

Cov[�̃�] = (𝑋⊤𝑉 −1𝑋 + Λ−1)−1Λ−1(𝑋⊤𝑉 −1𝑋 + Λ−1)−1 + from 𝜷,

+∑
𝑖
Λ𝑋⊤(𝑋Λ𝑋⊤ + 𝑉 )+𝑉𝑖(𝑋Λ𝑋⊤ + 𝑉 )+𝑋Λ from 𝜺𝑖. (35)

Note that a change in the covariance matrix of one of the source variables also

affects all the components corresponding to the other variables. The sense in which

this construction splits the uncertainty is not as a sum of unrelated covariance matri-

ces, but as terms proportional to how much the posterior mean would change if the

prior means were changed within their variance. It answers the question: “If other I need a more formal way
to say this.people had a different but similar amount of information on one of these independent

variables, how much would we expect their result to differ from ours?”

With Gaussian processes, the equivalent formulation of the posterior as distribu-

tion of a linear function is known as Matheron’s rule, and reads Citation for Matheron (see
Terenin’s paper)

𝑓𝐲(𝐱∗) = Σ𝑥∗𝑥Σ+
𝑥𝑥(𝐲 − 𝑓 (𝐱)) + 𝑓 (𝐱∗),

𝐸[𝑓𝐲(𝐱∗)] = 𝐸[𝑓 (𝐱∗) ∣ 𝑓 (𝐱) = 𝐲],

Cov[𝑓𝐲(𝐱∗)] = Cov[𝑓 (𝐱∗) ∣ 𝑓 (𝐱) = 𝐲] = Cov[𝑓𝐲(𝐱∗), 𝑓 (𝐱∗)],

Cov[𝑓𝐲(𝐱∗), 𝑓 (𝐱)] = 0. (36)

Although in this section we have used zero mean processes for notational conve-

nience, the formulae for �̃� and 𝑓 work as written with non-zero means since the

variables only appear as differences.

3.8 Concatenation
Split the data points in two vectors as 𝑓 (𝐱) = (𝑓 (𝐱1), 𝑓 (𝐱2)) = (𝐲1, 𝐲2). Accordingly,

divide the prior covariance matrices in blocks as

Σ𝑥𝑥 = (
Σ11 Σ12
Σ21 Σ22)

, Σ𝑥𝑥∗ = (
Σ1∗
Σ2∗)

. (37)
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The prediction equations (Equation 15), with prior mean zero, become

𝐸[𝑓 (𝐱∗) ∣ 𝐲1, 𝐲2] = (Σ∗1 Σ∗2)(
Σ11 Σ12
Σ21 Σ22)

−

(
𝐲1
𝐲2)

=

= Σ∗1Σ−
11𝐲1 + (Σ∗2 − Σ∗1Σ−

11Σ12)Σ−
22|1(𝐲2 − Σ21Σ−

11𝐲1),

Cov[𝑓 (𝐱∗) ∣ 𝐲1, 𝐲2] = Σ𝑥∗𝑥∗ − (Σ∗1 Σ∗2)(
Σ11 Σ12
Σ21 Σ22)

−

(
Σ1∗
Σ2∗)

=

= Σ𝑥∗𝑥∗ − Σ∗1Σ−
11Σ1∗ +

− (Σ∗2 − Σ∗1Σ−
11Σ12)Σ−

22|1(Σ2∗ − Σ21Σ−
11Σ1∗), (38)

where we have used Equation 118 to block invert Σ𝑥𝑥 , abbreviating the Schur comple-

ment as Σ22|1 = Σ22 − Σ21Σ−
11Σ12. The same result can be obtained by conditioning on

one vector at a time:

𝐸[(𝑓 (𝐱∗), 𝑓 (𝐱2)) ∣ 𝐲1] = (
Σ∗1
Σ21)

Σ+
11𝐲1,

Cov[(𝑓 (𝐱∗), 𝑓 (𝐱2)) ∣ 𝐲1] = (
Σ𝑥∗𝑥∗ Σ∗2
Σ2∗ Σ22)

−(
Σ∗1
Σ21)

Σ+
11 (Σ1∗ Σ12) ,

𝐸[𝑓 (𝐱∗) ∣ 𝐲1, 𝐲2] = 𝐸[𝑓 (𝐱∗) ∣ 𝐲1] + Cov[𝑓 (𝐱∗), 𝑓 (𝐱2) ∣ 𝐲1] ⋅
⋅ Cov[𝑓 (𝐱2) ∣ 𝐲1]+(𝐲2 − 𝐸[𝑓 (𝐱2) ∣ 𝐲1]),

Cov[𝑓 (𝐱∗) ∣ 𝐲1, 𝐲2] = Cov[𝑓 (𝐱∗) ∣ 𝐲1] − Cov[𝑓 (𝐱∗), 𝑓 (𝐱2) ∣ 𝐲1] ⋅
⋅ Cov[𝑓 (𝐱2) ∣ 𝐲1]+ Cov[𝑓 (𝐱2), 𝑓 (𝐱∗) ∣ 𝐲1]. (39)

Matheron’s rule concatenates as

𝑓∗|12 = 𝑓∗|1 + Σ∗2|1Σ+
22|1(𝐲2 − 𝑓2|1), (40)

where we have abbreviated the notation in obvious ways. If 𝑓 (𝐱2) ⫫ 𝑓 (𝐱1), i.e., Σ12 =
0, this reduces to

𝑓∗|12 = 𝑓∗|1 + Σ∗2Σ+
22(𝐲2 − 𝑓2). (41)

This gives a convenient practical recipe to bookkeep error propagation as infor-

mation is added. Start with the prior covariance matrix Σ, divided in blocks, of all

initial sets of variables. Upon considering another variable (either for conditioning or

prediction), extend Σ with new blocks as appropriate. Represent conditioning with

Matheron’s function as a collection of matrices that give the linear coefficients w.r.t.

each input variable. An unconditioned variable falls under this case as the identity

matrix. To compute a new Matheron variable, conditioned on variables which are

themselves either independent or conditioned on the same set, first compute the co-

variance matrices required for Equation 40 using error propagation, then determine

the matrix coefficients of the new variable.

3.9 Extension
Let 𝐲 = 𝐴𝑓 (𝐱)+𝜺. We want 𝑓 (𝐱∗) ∣ 𝐲. Since 𝐲 depends only on 𝑓 (𝐱), intuition suggests

it is possible to first obtain 𝑓 (𝐱) ∣ 𝐲 and then use it to compute the posterior on 𝑓 (𝐱∗):
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the information must “pass through” 𝑓 (𝐱). In other words, we want to “extend” the

posterior on 𝑓 (𝐱) to 𝑓 (𝐱∗). We first compute the posterior directly, and then try to

write it in terms of 𝑓 (𝐱) ∣ 𝐲: Try to use Σ− in place of Σ+

in this section

Cov[(𝑓 (𝐱), 𝑓 (𝐱∗), 𝜺)] =
⎛
⎜
⎜
⎝

Σ𝑥𝑥 Σ𝑥𝑥∗

Σ𝑥∗𝑥 Σ𝑥∗𝑥∗

𝑉

⎞
⎟
⎟
⎠
,

𝐸[𝑓 (𝐱) ∣ 𝐲] = Σ𝑥𝑥𝐴⊤(𝐴Σ𝑥𝑥𝐴⊤ + 𝑉 )+𝐲,
𝐸[𝑓 (𝐱∗) ∣ 𝐲] = Σ𝑥∗𝑥𝐴⊤(𝐴Σ𝑥𝑥𝐴⊤ + 𝑉 )+𝐲 =

= Σ𝑥∗𝑥(Σ+
𝑥𝑥Σ𝑥𝑥)𝐴⊤(𝐴Σ𝑥𝑥𝐴⊤ + 𝑉 )+𝐲 =

= Σ𝑥∗𝑥Σ+
𝑥𝑥𝐸[𝑓 (𝐱) ∣ 𝐲], (42)

where we can plug Σ+
𝑥𝑥Σ𝑥𝑥 into the expression, even though it is not the identity,

because the null space of Σ𝑥𝑥 is within the one of Σ𝑥∗𝑥 ,

Cov[𝑓 (𝐱) ∣ 𝐲] = Σ𝑥𝑥 − Σ𝑥𝑥𝐴⊤(𝐴Σ𝑥𝑥𝐴⊤ + 𝑉 )+𝐴Σ𝑥𝑥 ,
Cov[𝑓 (𝐱∗) ∣ 𝐲] = Σ𝑥∗𝑥∗ − Σ𝑥∗𝑥𝐴⊤(𝐴Σ𝑥𝑥𝐴⊤ + 𝑉 )+𝐴Σ𝑥𝑥∗ =

= Σ𝑥∗𝑥∗ − Σ𝑥∗𝑥(Σ+
𝑥𝑥Σ𝑥𝑥)𝐴⊤(𝐴Σ𝑥𝑥𝐴⊤ + 𝑉 )+𝐴(Σ𝑥𝑥Σ+

𝑥𝑥)Σ𝑥𝑥∗ =
= Σ𝑥∗𝑥∗ − Σ𝑥∗𝑥Σ+

𝑥𝑥(Σ𝑥𝑥 − Cov[𝑓 (𝐱) ∣ 𝐲])Σ+
𝑥𝑥Σ𝑥𝑥∗ =

= Cov[𝑓 (𝐱∗) ∣ 𝑓 (𝐱)] + Σ𝑥∗𝑥Σ+
𝑥𝑥 Cov[𝑓 (𝐱) ∣ 𝐲]Σ

+
𝑥𝑥Σ𝑥𝑥∗ . (43)

Analogously, given the Matheron variable for 𝑓 (𝐱) ∣ 𝐲, the Matheron rule for

𝑓 (𝐱∗) ∣ 𝐲 is

𝑓𝐲(𝐱∗) = Σ𝑥∗𝑥Σ+
𝑥𝑥(𝑓𝐲(𝐱) − 𝑓 (𝐱)) + 𝑓 (𝐱∗), (44)

which can be checked to be equal to the one obtained directly starting from 𝐲. I should devise a general
explanation of Matheron
rules based on Gaussian
Bayesian networks.3.10 Equivalence with unbiased estimation

In the frequentist interpretation of linear regression (with fixed covariances), the prior

distribution on 𝜷 becomes an independent unbiased estimate of 𝜷 with known covari-

ance matrix, while the distribution of 𝜺 coincides with the distribution of 𝐲 since 𝜷 is

considered a fixed unknown quantity. Normality of the distributions is not assumed.

Then the same formula that gives the posterior mean also defines the unbiased mini-

mum variance estimator: do the version with pseu-
doinverses⇒ If Λ is invert-
ible and (𝐼 − 𝑉𝑉 +)𝑋 = 0,
then the minimum of the
quadratic form is the same,
but with 𝑉 + instead of 𝑉 −1.
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𝐸[𝐲] = 𝑋𝜷, 𝐸[𝜷𝑃 ] = 𝜷, Cov[(𝐲,𝜷𝑃 )] = (
𝑉

Λ) , 𝜷𝑃 = 𝟎,

�̂� = argmin
𝜷 (

𝐲 − 𝑋𝜷
𝜷𝑃 − 𝜷)

⊤

(
𝑉

Λ)

−1

(
𝐲 − 𝑋𝜷
𝜷𝑃 − 𝜷) =

=
((𝑋⊤ 𝐼)(

𝑉
Λ)

−1

(
𝑋
𝐼 ))

−1

(𝑋⊤ 𝐼)(
𝑉

Λ)

−1

(
𝐲
𝟎) =

= (𝑋⊤𝑉 −1𝑋 + Λ−1)−1𝑋⊤𝑉 −1𝐲,

𝐸[�̂�] = 𝜷, Cov[�̂�] = (𝑋⊤𝑉 −1𝑋 + Λ−1)−1 ≤

≤ Cov[𝑀𝐲 + 𝑁𝜷𝑃 ], ∀𝑀,𝑁 ∶ 𝐸[𝑀𝐲 + 𝑁𝜷𝑃 ] = 𝜷. (45)

The same estimator can also be obtained as ridge regression with regularization

Λ, however in this case the estimator is not unbiased because it is not produced by an

estimate 𝜷𝑃 , Λ is added by fiat.

While Bayesian linear regression is equivalent to Bayesian Gaussian process re-

gression, frequentist linear regression is subtly different from frequentist Gaussian

process prediction, called Kriging. In the latter, the whole Gaussian process is a ran-

dom variable, so there are no fixed unknown parameters to be estimated. The “Kriging

equation” is

̂𝑓 (𝐱∗) = Σ𝑥∗𝑥Σ−1
𝑥𝑥𝑓 (𝐱), (46)

which corresponds to the mean of the conditional distribution in Equation 15.
̂𝑓 (𝐱∗)

is an unbiased minimum variance predictor. A predictor differs from an estimator in

that its bias and covariance matrix are defined w.r.t. a random variable instead of a

fixed quantity:

𝐸[ ̂𝑓 (𝐱∗) − 𝑓 (𝐱∗)] = 0,

Cov[ ̂𝑓 (𝐱∗) − 𝑓 (𝐱∗)] = Σ𝑥∗𝑥∗ − Σ𝑥∗𝑥Σ−1
𝑥𝑥Σ𝑥𝑥∗ ≤

≤ Cov[𝑀𝑓 (𝐱) − 𝑓 (𝐱∗)], ∀𝑀 ∶ 𝐸[𝑀𝑓 (𝐱) − 𝑓 (𝐱∗)] = 0. (47)

4 Implementation of GP regression
Let 𝑛 be the number of data points and 𝑚 the number of test points. In evaluating nu-

merically Equation 15, the most expensive inevitable computational step is inverting

Σ𝑥𝑥 , which has computational cost 𝑂(𝑛3) in general. The matrix multiplications by

Σ𝑥∗𝑥 take 𝑂(𝑚𝑛2), which could be comparable if 𝑚 is as large as 𝑛, however in practice

matrix multiplications are faster, we typically have freedom in choosing 𝑚, and above

all the inversion step has to be repeated many times during the inference over the

hyperparameters.

Here the first law of numerical linear algebra applies:

DO NOT INVERT MATRICES.
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The second applies too:

IF YOU THINK YOU HAVE FOUND A CASE WHERE INVERTING A MATRIX

MAKES SENSE, GO TO SLEEP. ON WAKING UP YOU WILL MORE LIKELY THAN

NOT REALIZE THE MATRIX WAS NOT TO BE INVERTED.

In a few sections I will invert a matrix. This, however, only implies that you should

doubt the chances of success of this work, not that you are allowed to invert matrices.

4.1 Decompositions
To compute an expression where a matrix inverse appear, decompose it as a product

of special matrices. The following table summarizes the decompositions relevant to

our task, sorted by computational cost:

Name Assumptions Product Cost (matmul = 1)

Cholesky Positive definite 𝐿𝐿⊤ 1

LDLT Symmetric 𝐿𝐷𝐿⊤ 5

QR – 𝑂𝐿𝑇 20

Diagonalization Symmetric 𝑂𝐷𝑂𝑇
30

SVD – 𝑂1𝐷𝑂𝑇
2 80

Symbol 𝐿 𝐷 𝑂
Matrix property Lower triangular Diagonal Orthogonal

The computational cost is proportional to 𝑛3. I’ve measured the factors reported

in the table timing the operations on my laptop with 1000 × 1000 matrices.

These decompositions can be found in any numerical linear algebra library. They

produce matrices that allow to easily solve linear systems. Triangular matrices can be

solved with line by line reduction, orthogonal ones with transposition, diagonal ones

with division.

The Cholesky decomposition is the conventional default since it’s the fastest one.

Use it in this way:

Σ𝑥𝑥 = 𝐿𝐿⊤,
Σ𝑥∗𝑥Σ−1

𝑥𝑥Σ𝑥𝑥∗ = Σ𝑥∗𝑥𝐿−⊤𝐿−1Σ𝑥𝑥∗ =
= (𝐿−1Σ𝑥𝑥∗)⊤(𝐿−1Σ𝑥𝑥∗). (48)

Use a library routine to compute 𝐿−1𝑀 , in Python I use scipy.linalg.solve triangular.

Using other decompositions or calculating the likelihood is analogous.

Here is a discussion of each decomposition:

Cholesky It’s the fastest generic decomposition. Depending on the implementa-

tion, it can be faster than matrix multiplication. However it requires the ma-

trix to be strictly positive definite. The covariance matrices of GPs tend to be

very ill-conditioned. The condition number is the ratio in absolute values of the

maximum to the minimum eigenvalue; “ill-conditioned” means having a large

condition number: if it is comparable to the inverse of the floating point 𝜀 (the
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smallest number that can be added to 1 without disappearing, 1×10−16 for 64 bit

floats), then the matrix numerically counts as degenerate. In practice Cholesky

will refuse to decompose many GP matrices because they are not strictly posi-

tive definite to numerical accuracy.

The solution is to add a multiple of the identity to the matrix: 𝑀 ↦ 𝑀+𝑢𝐼 , with

a small 𝑢 > 0. This is equivalent to adding 𝑢 to each eigenvalue. Assuming that

𝑢 ≪ 𝜆max and 𝜆min ≪ 𝑢, the condition number goes from 𝜆max/𝜆min to 𝜆max/𝑢.

An empirical rule to determine 𝑢 is

𝑢 = 𝑛𝜀�̂�max, �̂�max = max
𝑖

∑
𝑗
|𝑀𝑖𝑗 |. (49)

Any estimate �̂�max of the maximum eigenvalue will do, here I use the upper

bound given by Gershgorin’s theorem. It is probably a good idea to use some

multiple of this formula, say 16.

The value of 𝑢 has a large effect on the determinant, so the same 𝑢 should be

used to decompose matrices for evaluating Normal densities to be compared,

which happens with hyperparameter optimization.

Pivoted Cholesky (h/t Ilhan Polat, Lucas 2004) 2x slower variation of Cholesky that

does not require strict positive definiteness but only positive semidefiniteness.

Indefinite or negative definite matrices do not trigger an error, but the result

won’t make sense. It is implemented in LAPACK as *PSTRF, accessible in scipy

through scipy.linalg.lapack.dpstrf.

LDLT 5x slower variation of Cholesky that does not require definiteness. 𝐷 is not

diagonal but 2 × 2 block diagonal. I do not expect this to be useful for GP re-

gression.

Diagonalization For symmetric matrices diagonalization is 30× slower than Cholesky

(on my computer). It does not require positive definiteness, however the com-

puted spectrum will be chock-full of small negative numbers that somehow

need to be removed. There are two alternatives: 1) promote all small or neg-

ative eigenvalues to a minimum value, a default choice for the threshold can

be the 𝑢 of Equation 49, 2) remove the small/negative eigenvalues, making the

matrix low-rank and so evaluating a pseudoinverse instead of an inverse.

Even though it is way slower than Cholesky, it is useful in one special case.

Models normally include a Normal independent error term in addition to the

GP, so the complete covariance matrix is 𝑉 = Σ𝑥𝑥 + 𝜎2𝐼 , with 𝜎 the standard

deviation of the error. If 𝜎 is unknown, it is a free hyperparameter, and 𝑉 in

general would have to be decomposed again for each value of 𝜎 that occurs in

any iterative inference algorithm. However, by diagonalizing Σ𝑥𝑥 , we have

Σ𝑥𝑥 = 𝑂𝐷𝑂⊤,
𝑉 = Σ𝑥𝑥 + 𝜎2𝐼 = 𝑂𝐷𝑂⊤ + 𝜎2𝐼 = 𝑂(𝐷 + 𝜎2𝐼 )𝑂⊤, (50)
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so the matrix is already decomposed even if 𝜎 changes. If agnostic inference

on 𝜎 would require at least 30 likelihood evaluations, this is a win. If there are

other free hyperparameters that do not take advantage of diagonalization, then

it’s probably not worth it.

Another usage of diagonalization is debugging. On small problems by default I

use diagonalization such that if the matrix turns out not positive definite I can

look at the eigenvalues. Sometimes in more contrived schemes, if the code is

not working, I try diagonalization instead of Cholesky and it goes smooth. Or

the contrary. I admit ignorance.

QR Works on rectangular matrices. Since the output must be rectangular, one of

the two matrices must be truncated to rectangular, either the orthogonal or the

triangular one (which can be chosen). Rectangular matrices occur in GP regres-

sion when considering linear transformations (like the FK tables). However I’ve

still not found a use for QR, I’ve always been forced for some reason to use SVD

which is 4× slower.

SVD Works on rectangular matrices too. It is powerful and accurate because it pro-

duces orthogonal matrices, but it’s the slowest one. Having a decomposition in

terms of orthogonal matrices may be necessary when dealing with pseudoin-

verses. If you don’t need the full larger orthogonal matrix, you should compute

a “thin” SVD.

4.2 Pseudoinverses
If there are constraints on the process, the kernel operator may be degenerate, and

likewise the covariance matrices it generates. Degeneracy also arises with finite trans-

formations if it the output space is larger: 𝐳 = 𝐴𝐲 with 𝐴 of size 𝑚 × 𝑛 and 𝑚 > 𝑛.

In another sense, degeneracy occurs numerically if the spectrum of Σ𝑥𝑥 has many

small eigenvalues, which typically happens with smooth processes since groups of

close points are highly correlated. In this case one has to decide if to “inflate” the

small eigenvalues or to remove them and work with a degenerate distribution. The

standard technique is inflation because it can be done without diagonalization, as

described for the Cholesky decomposition in section 4.1.

Another advantage of inflation is that it is a differentiable (almost everywhere if

implemented with diagonalization and thresholding) transformation. This is impor-

tant for hyperparameter inference; as the numerically determined rank of Σ𝑥𝑥 likely

varies with hyperparameter values, the likelihood jumps as eigenvalues are added or

removed from the pseudodeterminant, so with eigenvalue truncation it may be nec-

essary to fix the rank once and for all at the start of the inference.

If the calculation of a pseudoinverse or a projector can not be avoided, use SVD

(or diagonalization for symmetric matrices):

𝑀 = 𝑈𝑆𝑉 ⊤, 𝑀+ = 𝑉 𝑆+𝑈⊤, 𝑆+𝑖𝑗 =

{
1/𝑆𝑗𝑖 𝑆𝑗𝑖 > 0,
0 𝑆𝑗𝑖 = 0,

𝑀𝑀+ = 𝑈𝑆𝑆+𝑈⊤, 𝑀+𝑀 = 𝑉 𝑆+𝑆𝑉 ⊤. (51)
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Diagonalization costs 30 matmuls. For symmetric matrices, a faster approximate

calculation can be computed by observing that I tried this trick, also with
a series like Jhurani and
Demkowicz (2012), but it’s
not accurate (as expected).
Try instead to use the piv-
oted Cholesky with some
block formula, it should be
faster and accurate.

𝐴+ = lim
𝑢→0+

𝐴(𝐴3 + 𝑢𝐼 )−1𝐴. (52)

In computing 𝐴3
, all the eigenvalues of 𝐴 are raised to the same power, and thus also

their ratios to the maximum eigenvalue. After inflating with 𝑢𝐼 , all eigenvalues below

3
√
𝑢 are “buried.” Thus by fixing 𝑢 to a small finite value (like the one in Equation 49),

Equation 52 gives an approximation to the pseudoinverse with a symmetric formula.

For example, to compute the second term of the conditioning:

Σ3
𝑥𝑥 + 𝑢𝐼 = 𝐿𝐿⊤ (Cholesky),

Σ𝑥∗𝑥Σ+
𝑥𝑥Σ𝑥𝑥∗ ≈ Σ𝑥∗𝑥Σ𝑥𝑥𝐿−⊤𝐿−1Σ𝑥𝑥Σ𝑥𝑥∗ = (𝐿−1Σ𝑥𝑥Σ𝑥𝑥∗)⊤(𝐿−1Σ𝑥𝑥Σ𝑥𝑥∗). (53)

This decomposition costs 1 Cholesky + 2 matmuls for the power + 1 matmul for the

external term. Note: I made up this “Cholesky pseudoinverse” and I’m not sure how

good or useful it is. I still have to try it thoroughly. In particular I don’t know how

to compute the log pseudo-determinant, although I guess 1/3 of ∑𝑖 2 log 𝐿𝑖𝑖 − tr(𝐼 −
𝐴+𝐴) log 𝑢 could work. See Jhurani and Demkowicz (2012) for a similar technique.

4.3 Hyperparameters
Apart from some very specific cases where inference over hyperparameters is analytic

(conjugated priors), the posterior has to be maximized or sampled with an iterative

numerical algorithm. The log posterior of the hyperparameters contains the log con-

ditional probability of 𝑓 (𝐱) (the likelihood) and the log prior of 𝜃. We concentrate on

the likelihood.

Regularizing the term 𝛿((𝐼 − ΣΣ+)(𝐲 −𝐦)) as a Normal with small but finite vari-

ance 𝜀, the full minus log likelihood is

𝐿 = − log 𝑝(𝑓 (𝐱) = 𝐲 ∣ 𝜃) =
1
2
log det(2𝜋Σ̃) +

1
2
(𝐲 −𝐦)⊤Σ̃−1(𝐲 −𝐦), (54)

Σ̃ = Σ + (𝐼 − ΣΣ+)𝜀,
𝐦 = 𝑚(𝐱; 𝜃), Σ = Σ𝑥𝑥(𝜃).

Most algorithms need the derivatives of the target function. Using the identities in

section A.4, we obtain the gradient

𝜕𝐿
𝜕𝜃

=
1
2
tr(Σ̃−1 𝜕Σ̃

𝜕𝜃)
− (𝐲 −𝐦)⊤Σ̃−1 𝜕𝐦

𝜕𝜃
−
1
2
(𝐲 −𝐦)⊤Σ̃−1 𝜕Σ̃

𝜕𝜃
Σ̃−1(𝐲 −𝐦), (55)
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and the hessian

𝜕2𝐿
𝜕𝜃𝜕𝜃′

= −
1
2
tr(Σ̃−1 𝜕Σ̃

𝜕𝜃′
Σ̃−1 𝜕Σ̃

𝜕𝜃)
+
1
2
tr(Σ̃−1 𝜕2Σ̃

𝜕𝜃𝜕𝜃′)
+

+
𝜕𝐦⊤

𝜕𝜃′
Σ̃−1 𝜕𝐦

𝜕𝜃
− (𝐲 −𝐦)⊤Σ̃−1 𝜕2𝐦

𝜕𝜃𝜕𝜃′
+

+ (𝐲 −𝐦)⊤Σ̃−1 𝜕Σ̃
𝜕𝜃′

Σ̃−1 𝜕𝐦
𝜕𝜃

+ (𝐲 −𝐦)⊤Σ̃−1 𝜕Σ̃
𝜕𝜃

Σ̃−1 𝜕𝐦
𝜕𝜃′

+

−
1
2
(𝐲 −𝐦)⊤Σ̃−1 𝜕2Σ̃

𝜕𝜃𝜕𝜃′
Σ̃−1(𝐲 −𝐦) + (𝐲 −𝐦)⊤Σ̃−1 𝜕Σ̃

𝜕𝜃
Σ̃−1 𝜕Σ̃

𝜕𝜃′
Σ̃−1(𝐲 −𝐦). (56)

Some of the algorithms that use the Hessian require it to be positive definite. This

is not the case in general. The Fisher information matrix is a nonnegative definite

substitute for the Hessian. Using the Fisher matrix in a Newton-type minimizer is

called “Fisher scoring.” The Fisher matrix is:

𝐸 [
𝜕2𝐿
𝜕𝜃𝜕𝜃′

||||
𝜃] =

1
2
tr(Σ̃−1 𝜕Σ̃

𝜕𝜃′
Σ̃−1 𝜕Σ̃

𝜕𝜃)
+
𝜕𝐦⊤

𝜕𝜃′
Σ̃−1 𝜕𝐦

𝜕𝜃
. (57)

It does not require to compute second derivatives. Expanding the definition of Σ̃ in

Equations 54, 55 and 57, assuming (𝐼 −Σ+Σ)(𝐲−𝐦) = 𝑂(
√
𝜀), and keeping only terms

𝑂(𝜀0) or larger, we obtain

𝐿 =
𝑛
2
log(2𝜋) +

1
2
log pdet Σ +

1
2
(𝐲 −𝐦)⊤Σ+(𝐲 −𝐦) +

+ tr(𝐼 − ΣΣ+) log 𝜀 +
1
2
(𝐲 −𝐦)⊤

𝐼 − ΣΣ+

𝜀
(𝐲 −𝐦), (58)

𝜕𝐿
𝜕𝜃

=
1
2
tr(Σ+ 𝜕Σ

𝜕𝜃)
− (𝐲 −𝐦)⊤ (Σ+ +

𝐼 − ΣΣ+

𝜀 )
𝜕𝐦
𝜕𝜃

+

−
1
2
(𝐲 −𝐦)⊤ (Σ+ + 2

𝐼 − ΣΣ+

𝜀 )
𝜕Σ
𝜕𝜃

Σ+(𝐲 −𝐦) + 𝑂(
√
𝜀), (59)

𝐸 [
𝜕2𝐿
𝜕𝜃𝜕𝜃′

||||
𝜃] =

1
2
tr((Σ+ + 2

𝐼 − ΣΣ+

𝜀 )
𝜕Σ
𝜕𝜃

Σ+ 𝜕Σ
𝜕𝜃′)

− 2 tr(Σ+ 𝜕Σ
𝜕𝜃

(𝐼 − ΣΣ+)
𝜕Σ
𝜕𝜃′

Σ+
) +

+
𝜕𝐦⊤

𝜕𝜃′ (Σ+ +
𝐼 − ΣΣ+

𝜀 )
𝜕𝐦
𝜕𝜃

+ 𝑂(𝜀). (60)

If these formulas look too asymmetric to you, consider that it is possible to do the Add a section on how to
compute efficiently the
gradient in reverse and
forward mode.

following replacement (which is not a standalone equality)

(Σ+ + 2
𝐼 − ΣΣ+

𝜀 )
𝜕Σ
𝜕𝜃

Σ+ ↦ (Σ+ +
𝐼 − ΣΣ+

𝜀 )
𝜕Σ
𝜕𝜃 (Σ+ +

𝐼 − ΣΣ+

𝜀 ) (61)

due to Equation 124. However I guess that numerically having only one 1/𝜀 around

is better. Test this!
If the prior on 𝜃 is Normal with mean 𝝁 and covariance matrix Θ, the gradient for

the full minus log posterior gets an additional term Θ−1(𝜃−𝝁), while the Hessian and
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Fisher matrix get a Θ−1
. This is a case in which you are allowed to invert a matrix,

since Θ is a small fixed known matrix completely under your control, e.g., you could

fix directly Θ−1
. But actually I’d decom-

pose Θ = 𝐴𝐴⊤ and
reparametrize as 𝜃 = 𝐴�̃�.

If the prior is not Normal, it can be convenient to express it as a Gaussian copula.

Let 𝜃 = (𝜃1,… , 𝜃𝑑) and assume they are a priori independent with cumulative distri-

butions 𝐹1,… , 𝐹𝑛, i.e., 𝐹𝑖(𝑡) = 𝑃(𝜃𝑖 < 𝑡). Let 𝑣𝑖 be i.i.d. standard Normal variables. Then

𝜃 can be written as 𝜃𝑖 = 𝐹−1
𝑖 (Φ(𝑣𝑖)), Φ being the Normal cdf. A dependence between

the 𝜃𝑖 can be introduced by making the 𝑣𝑖 correlated; provided the 𝑣𝑖 have mean 0

and variance 1, the marginal distributions of the 𝜃𝑖 remain the same. The inference is

performed on 𝐯, and the final result is transformed back to 𝜃.

The two main alternatives for summarizing the posterior are MCMC sampling and

the Laplace approximation, i.e., approximating the distribution as Normal with mean

equal to the maximum a posteriori (the “MAP”) and precision (i.e., inverse covariance)

matrix equal to the Hessian. It is convenient in any case to reparametrize the param-

eters to try to have a posterior more similar to a Normal distribution, particularly for

Laplace. The Gaussian copula formulation is a good starting point. Unfortunately,

sometimes the Laplace approximation fails particularly badly on GP hyperparame-

ters, even if the model is correctly specified and the data abundant. In general it tends Cite Basak? ⇒ Basak is not
enoughto be overconfident. If the hyperparameters are not of direct interest, i.e., they do

not correspond to Physical quantities, but are just considered a way to implement a

flexible model, this may not be a problem. The Fisher matrix tends to be less narrow

than the Hessian, so a slight mitigation is using it as precision matrix in place of the

Hessian.

Once the inference on the hyperparameters is complete, to keep into account the

uncertainty on them when applying Equation 15, the easier way is sampling in turn

the hyperparameters and then the predictive Normal distribution computed with the

sampled hyperparameters, as indicated by Equation 20.

4.4 Latent Gaussian processes
If the data can not be expressed as a linear transformation of the Gaussian process plus

Normal errors, then the joint distribution of the data and test points is not Normal and

Equation 15 does not apply.

4.4.1 Non-Normal likelihood

If the data has continuous values (or discrete with many strata) with a non-Normal

distribution where the Gaussian process represents a location parameter, then a con-

venient approximation is transforming the data with a variance-stabilizing transfor-

mation and treating it as Normal-distributed.

Consider a Poisson-distributed variable 𝑛. Its mean and variance are both 𝜇. To

approximate its distribution as Normal with a location parameter, we would need

the variance to be fixed and not dependent on the mean. Let 𝑛′ = 𝑓 (𝑛). To first

order, 𝐸[𝑛′] = 𝑓 (𝜇) and Var[𝑛′] = 𝑓 ′(𝜇)2𝜇. If we decide to fix Var[𝑛′] = 1/4, then

𝑓 (𝜇) = √𝜇 (plus an arbitrary constant). Thus the square root of Poisson data can
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better be approximated as Normal, with the Gaussian process representing the mean√
𝜇(𝑥), and constant standard error 1/2.

There are improved more sophisticated variance-stabilizing transformations for

the Poisson distribution. However, the first-order one has the nice property that it can

be modified to not be an approximation on bins with zero counts, the most problematic

when approximating Poisson data as Normal, leading to the well known advice to

make sure to have at least 5 counts per bin. Consider the original Poisson distribution

for 𝑛 and the Normal distribution on

√
𝑛:

(𝑛; 𝜇) =
𝜇𝑛

𝑛!
𝑒−𝜇 ∝ 𝜇𝑛𝑒−𝜇,

 (
√
𝑛;√𝜇, 1/4) =

2√
2𝜋

exp(−
1
2
(
√
𝑛 −√𝜇)2

1/4 ) ∝ exp(−2(
√
𝑛 −√𝜇)2), (62)

where we have removed all factors which do not depend on 𝜇, since they do not matter

for inference on 𝜇. If 𝑛 = 0, the two likelihoods become

(𝑛; 𝜇) ∝ 𝑒−𝜇,  (
√
𝑛;√𝜇, 1/4) ∝ 𝑒−2𝜇. (63)

Thus if for bins with 𝑛 = 0 we set the error on
√𝜇 to 1/

√
2 instead of 1/2, the contri-

bution to the likelihood of that bins is exact even under the Normal approximation.

Small but not empty bins will still have an approximated likelihood. In particular,

while the Poisson likelihood strongly disfavors 𝜇 → 0 if 𝑛 > 0, the Normal approx-

imation is chill even with 𝜇 = 0 if 𝑛 is small. So it might still be useful to aggregate

small bins to reach 5 counts, while regions with many zero bins can be left as they are

instead of excluding them or making a very large bin.

4.4.2 Nonlinear transformations

Even if the data has a conditional Normal distribution or can be approximated as such,

it could be the case that the location parameter can not be expressed as a Gaussian

process, for example if there are bounds. It is usually reasonable to write such location

parameters as a nonlinear transformation of a Gaussian process.

With Normal data errors and a Gaussian process prior on the latent mean function,

the inference becomes a nonlinear least squares problem, albeit unusually dense.

In nonlinear least-squares problems, the minus log distribution to be analyzed can

be written as

𝑄(𝜷) =
1
2
𝐫(𝜷)⊤𝐫(𝜷), (64)

where 𝐫 is called “residuals vector function.” In Physics we usually call 𝑄 the chi-

squared, but in statistics it’s avoided because it suggests a distributional assumption

that often is not made, and there are many possible likelihood ratio tests, each with its

own chi-squared (Physicists usually deal only with the maximal LR test). Its gradient,
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Hessian and Fisher information matrix are

𝜕𝑄
𝜕𝛽

= 𝐫(𝜷)⊤
𝜕𝐫
𝜕𝛽

, (65)

𝜕2𝑄
𝜕𝛽𝜕𝛽′ =

𝜕𝐫⊤

𝜕𝛽′
𝜕𝐫
𝜕𝛽

+ 𝐫(𝜷)⊤
𝜕2𝐫

𝜕𝛽𝜕𝛽′ , (66)

𝐸 [
𝜕2𝑄
𝜕𝛽𝜕𝛽′

||||
𝜷] =

𝜕𝐫⊤

𝜕𝛽′
𝜕𝐫
𝜕𝛽

, (67)

where the Fisher matrix is calculated assuming 𝐸[𝐫 ∣ 𝜷] = 0, which is true if 𝑄 comes

from a Normal distribution on 𝐫. Otherwise, the “Fisher matrix” above is just a positive

definite alternative to the Hessian. Maybe the correct gener-
alization is doing Fisher at
each hierarchical level and
summing.

The result of the inference is a Laplace approximation with the location of the

maximum of 𝑄 as mean and the Fisher matrix as precision. I know that in particle

Physics many people assume that likelihood maximization routines output the Hes-

sian (called “observed Fisher information” in statistics), but Fisher is the standard for

least squares. The maximum is searched by iteratively linearizing locally the problem

and moving to the linear least squares solution

Δ𝜷 = 𝑋+𝐫, 𝑋𝑖𝑗 =
𝜕𝑟𝑖
𝜕𝛽𝑗

, (68)

which is equivalent to Fisher scoring.

Our case translates to least squares in the following way. As before we indicate the

Gaussian process values we are using with 𝑓 (𝐱). Let 𝐭 be the nonlinear transformation

that maps 𝑓 (𝐱) to the data mean, while the fixed data covariance matrix is 𝑉 . The

posterior on 𝑓 (𝐱) is proportional to Do the hierarchical version
of this, with a graph of
nonlinear transformations. (𝐲; 𝐭(𝑓 (𝐱)), 𝑉 ) ⋅ (𝑓 (𝐱);𝐦,Σ), (69)

which gives a quadratic form

𝑄 =
1
2
(𝐲 − 𝐭)⊤𝑉 +(𝐲 − 𝐭) +

1
2
(𝑓 −𝐦)⊤Σ+(𝑓 −𝐦), (70)

implying our vectors of parameters and residuals are I have to take into ac-
count the constraints (𝐼 −
ΣΣ+)(𝑓 − 𝐦) = 0 and (𝐼 −
𝑉𝑉 +)(𝐲 − 𝐭) = 0.𝜷 = 𝑓 (𝐱), 𝐫(𝜷) = (

𝐹(𝐲 − 𝐭(𝜷))
𝐺(𝜷 −𝐦) ) ,

𝜕𝐫
𝜕𝛽

= (
−𝐹 𝜕𝐭/𝜕𝛽

𝐺 ) , (71)

where 𝑉 + = 𝐹⊤𝐹 and Σ+ = 𝐺⊤𝐺 are two symmetric decompositions of the pseu-

doinverses of the covariance matrices, determined with a method of choice (e.g., with

Cholesky 𝑉 = 𝐿𝐿⊤, 𝑉 −1 = 𝐿−⊤𝐿−1). The gradient and “Fisher matrix” are Maybe in the degenerate
case I should use directly
the Schur complement in-
stead of pseudoinverting
Fisher?

𝜕𝑄
𝜕𝛽

= −(𝐲 − 𝐭)⊤𝑉 + 𝜕𝐭
𝜕𝛽

+ (𝜷 −𝐦)⊤Σ+, (72)

𝐸 [
𝜕2𝑄
𝜕𝛽𝜕𝛽′

||||
𝜷] =

𝜕𝐭⊤

𝜕𝛽
𝑉 + 𝜕𝐭

𝜕𝛽′ + Σ+. (73)
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If you use a nonlinear least squares routine, Equation 71 gives the required inputs.

In the following we assume the matrices are invertible. Let 𝐽 = 𝜕𝐭/𝜕𝛽, and we Singular version?
intend 𝐽 and 𝐭 to be evaluated in the minimum 𝜷min. The Laplace-Fisher-approximated

posterior can be written as a Matheron’s rule using the linearization in the minimum:

(
𝜺
𝜷) ∼  (𝟎,(

𝑉
Σ)) ,

�̃� = Σ𝐽 ⊤(𝐽Σ𝐽 ⊤ + 𝑉 )−1(𝐲 − 𝐭 − 𝐽 (𝜷 − 𝜷min) − 𝜺) + 𝜷, (74)

𝐸[�̃�] = 𝜷min,

Cov[�̃�] = 𝐸 [
𝜕2𝑄
𝜕𝛽𝜕𝛽′ ]

−1

.

To check the expected value, use the fact that 𝜷min satisfies 𝜕𝑄/𝜕𝛽 = 0. This rule

allows an approximated version of the error propagation technique explained in sec-

tions 3.7 and 3.8, and is implemented by the Python package lsqfit (Lepage and

Gohlke 2021).

To extend the posterior from 𝜷 = 𝑓 (𝐱) to 𝑓 (𝐱∗), use the formulae of section 3.9.

4.4.3 Adding back the hyperparameters

With nonlinear data link and free hyperparameters with Normal prior, the posterior

is proportional to This is a model compatible
with INLA, however INLA
is focused on getting the
marginals even if they are
not Normal, while here we
want a Normal approxima-
tion of the full posterior.
With Poisson data and log
link, it’s a Log-Gaussian
Cox Process.

𝑝(𝑓 , 𝜃 ∣ 𝐲) ∝  (𝐲; 𝐭(𝑓 (𝐱)), 𝑉 ) ⋅ (𝑓 (𝐱);𝐦,Σ) ⋅ (𝜃;𝝁,Θ). (75)

Assuming 𝑉 does not depend on 𝜃, the minus log posterior of Equation 70 becomes,

by adding all terms which depend on 𝜃,

𝑄(𝑓 , 𝜃) =
1
2
log pdet Σ(𝜃) +

1
2
(𝑓 −𝐦(𝜃))⊤Σ+(𝑓 −𝐦(𝜃)) +

+
1
2
(𝐲 − 𝐭(𝑓 ))⊤𝑉 +(𝐲 − 𝐭(𝑓 )) +

1
2
(𝜃 − 𝝁)⊤Θ+(𝜃 − 𝝁), (76)

where the free parameters are 𝑓 and 𝜃. The rank of Σ must not change over the

allowed values of 𝜃. Assuming Σ is invertible and 𝐭 does not depend on 𝜃, its gradient

and “Fisher matrix” are Constraints (𝐼 − ΣΣ+)(𝑓 −
𝐦) = 0, (𝐼−𝑉𝑉 +)(𝐲−𝐭) = 0,
and (𝐼 − ΘΘ+)𝜃 = 0.𝜕𝑄

𝜕𝑓
= −(𝐲 − 𝐭)⊤𝑉 + 𝜕𝐭

𝜕𝑓
+ (𝑓 −𝐦)⊤Σ+,

𝜕𝑄
𝜕𝜃

=
1
2
tr(Σ−1 𝜕Σ

𝜕𝜃)
− (𝑓 −𝐦)⊤Σ+ 𝜕𝐦

𝜕𝜃
−
1
2
(𝑓 −𝐦)⊤Σ−1 𝜕Σ

𝜕𝜃
Σ−1(𝑓 −𝐦) + (𝜃 − 𝝁)⊤Θ+,

(77)
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𝐸 [
𝜕2𝑄
𝜕𝑓 𝜕𝑓 ′

||||
𝜃] =

𝜕𝐭⊤

𝜕𝑓
𝑉 + 𝜕𝐭

𝜕𝑓 ′ + Σ+,

𝐸 [
𝜕2𝑄
𝜕𝑓 𝜕𝜃

||||
𝜃] = 0,

𝐸 [
𝜕2𝑄
𝜕𝜃𝜕𝜃′

||||
𝜃] =

1
2
tr(Σ−1 𝜕Σ

𝜕𝜃′
Σ−1 𝜕Σ

𝜕𝜃)
+
𝜕𝐦⊤

𝜕𝜃′
Σ+ 𝜕𝐦

𝜕𝜃
+ Θ+, (78)

where the expected values are calculated under the distributions 𝐲 − 𝐭(𝑓 ) ∼  (0, 𝑉 )
and 𝑓 ∼  (𝐦,Σ).

The dependence of Σ on 𝜃 makes this posterior less amenable to the Laplace ap-

proximation and forbids the definition of a Matheron’s rule. It can be sampled with a I’m not sure I can’t do
Matheron.Markov Chain algorithm. If Σ can be decomposed efficiently, the Fisher matrix may

be used as a mass matrix for a Hybrid (a.k.a. Hamiltonian) Monte Carlo.

A different way to handle the presence of free covariance matrix hyperparame-

ters is analogous to the one described in section 4.3: first detetermine the marginal

posterior distribution of the hyperparameters, or an approximation of it, then sample

it and for each value determine the conditional posterior distribution of the process.

We approximate the posterior on 𝜃 by marginalizing 𝑓 from the posterior in Equa-

tion 76 with Laplace using the 𝑓 𝑓 block of the Fisher matrix of Equation 78:

∫
𝐴𝐴+𝑥=𝑥

d𝑥 𝑒−
1
2 𝑥

⊤𝐴+𝑥 =
√
pdet(2𝜋𝐴),

𝑓min(𝜃) = argmin
𝑓

𝑄(𝑓 , 𝜃),

𝐴+(𝜃) =
𝜕𝐭⊤

𝜕𝑓
𝑉 + 𝜕𝐭

𝜕𝑓 ′

||||𝑓min

+ Σ+,

𝑄(𝑓 , 𝜃) ≈ 𝑄(𝑓min, 𝜃) +
1
2
(𝑓 − 𝑓min)⊤𝐴+(𝑓 − 𝑓min),

− log 𝑝(𝜃 ∣ 𝐲) = − log∫ d𝑓 𝑒−𝑄(𝑓 ,𝜃) + … ≈

≈ 𝑄(𝑓min, 𝜃) +
1
2
log pdet𝐴. (79)

In practice this amounts to running the least squares procedure described in sec-

tion 4.4.2 to determine 𝑓min for each value of 𝜃, and then compute − log 𝑝(𝜃 ∣ 𝐲), to

which a minimization or another generic algorithm is applied. This two-step proce- Compute the Laplace ap-
proximation for 𝜃 with the
implicit function theorem.

dure may be more convenient than dealing with the complete posterior Equation 76 at

once because the specialized least squares algorithm takes advantage of the structure

of the subproblem w.r.t. 𝑓 .

If 𝜃 is fixed to the value that maximizes 𝑝(𝜃 ∣ 𝐲), without taking into account its

uncertainty, the result is an empirical Bayes approximation of the posterior and Math-

eron’s rule can be applied to the “best” least squares subproblem. This is implemented

in lsqfit.empbayes fit.
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4.5 Optimization
Computationally, the calculations with Gaussian processes are mostly linear algebra.

This is true also when running iterative algorithms to deal with hyperparameters or

nonlinearities. The key steps are:

Produce the covariance matrix Let 𝑛 be the number of datapoints, or process points

the data is linked to. Determining the covariance matrix takes up𝑂(𝑛2) time and

memory. Complicated kernels can take a long time to compute. With large 𝑛,

the matrix may not fit in memory. For example, with 𝑛 = 10 000, the covariance

matrix is worth 0.8GB using 64 bit floating point.

Decompose the covariance matrix Decomposing the prior covariance matrix of

the datapoints is the most crucial step, since the number of datapoints is fixed by

the problem and it appears at each iterative step when analyzing hyperparam-

eters. Generic decomposition algorithms are 𝑂(𝑛3). On my laptop, Cholesky

with 𝑛 = 10 000 and fp64 takes 2.1 s, diagonalization 80 s. Add section on comput-
ing the likelihood, mention
that often decomposition is
not the bottleneck

Sample predictions Let 𝑚 be the number of points were the posterior of the process

is evaluated. Since the values are strongly correlated, it is necessary to take

into account the full joint distribution, instead of only computing the variance

at each location. To sample from the posterior it is necessary to decompose the

𝑚 × 𝑚 covariance matrix. Often 𝑚 can be chosen with some arbitrariness, so

this may not be a problem.

4.5.1 Numerical operations

The first thing you need for numerical linear algebra is a software library. Most com-

puting environments provide state of the art implementations for CPU, while to use

the GPU it may be necessary to make a particular choice of library/GPU brand. Per-

sonally, I mostly use JAX on CPU.

The numerical type can either be 32 or 64 bit floating point. 32 bit is twice as fast

as 64 bit, but the accuracy is so low that some white noise may be visible in the final

result. Due to numerical degeneracy, the decomposition of the prior covariance ma-

trix is particularly sensitive to numerical accuracy. In general, the accuracy required

grows arbitrarily with the sample size, but 64 bit should be enough up to the currently

unfeasible 𝑛 = 1 × 109. The Google guy said this,
find citation.Most operations other than decompositions are matrix multiplications. On my

installation, JAX matmuls are twice as fast as numpy matmuls.

4.5.2 Special decompositions

There are many special decomposition algorithms that take advantage of some prop-

erties of the matrix. Most of them do not apply to the PDF fit as currently set up, I list

all I know of for completeness in case the evolution grid was significantly refined.
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Circulant A circulant matrix has constant diagonals that wrap around the borders:

𝐴𝑖𝑗 = 𝐴𝑖+𝑘 mod 𝑛,𝑗+𝑘 mod 𝑛. It arises from stationary periodic processes evaluated on an

evenly-spaced grid aligned with the period. Any circulant matrix is diagonalized by

the Discrete Fourier Transform, so the decomposition products can be computed in

𝑂(𝑛 log 𝑛) with FFT. The product of circulant matrices is circulant.

Toeplitz Toeplitz matrices have constant diagonals: 𝐴𝑖𝑗 = 𝐴𝑖+𝑘,𝑗+𝑘 . They typically

arise from 1D stationary processes evaluated on evenly spaced points. ND stationary

processes on evenly spaced axes-aligned grids produce nested block Toeplitz matrices,

where the Toeplitz structure applies at the level of blocks, and each block is nested

Toeplitz.

Toeplitz matrices can be stored in 𝑂(𝑛) space and decomposed at least as fast as

𝑂(𝑛2). The decomposition can be computed and applied in a streaming fashion, to

avoid storing 𝑂(𝑛2) matrices. The algorithms are:

Schur 𝑂(𝑛2), produces a column at a time of the Cholesky factor 𝐿.

Levinson-Durbin 𝑂(𝑛2), produces a row at a time of 𝐿−1, less numerically accurate

than Schur.

Levinson-Durbin-Trench-Zohar 𝑂(𝑛2), faster version of Levinson-Durbin special-

ized to solve the linear system, i.e., compute 𝐿−⊤𝐿−1𝑀 .

Generalized Schur 𝑂(𝑛 log2 𝑛), better complexity version of Schur to solve the lin-

ear system.

PCG 𝑂(𝑛 log 𝑛), preconditioned conjugate gradient iterative method to solve the lin-

ear system. Best complexity but less straightforward to apply due to the choice

of preconditioning.

Moreover, Toeplitz matrix-vector multiplication is 𝑂(𝑛 log 𝑛) because it can be

computed with FFT. The product of two Toeplitz matrices is not Toeplitz in general.

Any Toeplitz matrix can be embedded in a larger circulant matrix. However it

may not be possible to embed a positive semidefinite Toeplitz matrix in a pos. sdef.

circulant one. Since the FFT is fast, it may be worth trying to decompose a Toeplitz

matrix in this way, and check numerically if the Fourier coefficients are nonnegative.

Some stationary kernels always guarantee this property. Nested Toeplitz matrices can

be embedded recursively too.

Sparse Sparse matrices can be decomposed with faster specialized algorithms. They

typically arise from spatial processes, where far away points are assumed uncorre-

lated, by choosing an apposite finite support kernel. What is the computational
complexity of a sparse
Cholesky in terms of
the number of nonzero
elements?

Sparse inverse Assumptions on the sparsity of the (pseudo-)inverse of the matrix

can be very effective. They correspond to conditional independence assumptions,

since they allow the Gaussian probability density to be factorized in terms that couple

only subsets of the variables. They typically arise either from (1D) Markov processes,

or from Gaussian Markov random fields (GRMF).
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The sparsity pattern can be represented as a Bayesian Network. The decomposi-

tion can take advantage of the fact that if two (sets of) variables are separated by a

third, conditioning must “pass through” the middle variable as in section 3.9. In the

Markov chain case, the algorithm is called Kalman filter.

If inverse sparsity is not exact, it may be forced as an approximation, possibly by

adding auxiliary points, called “inducing points.”

Kronecker product If a ND kernel is separable as a product along axes, and the

points form a grid aligned with the axes, then the covariance matrix is a kronecker

product. Each factor can be decomposed separately.

Blockwise decomposition If the covariance matrix is block diagonal, each block

can be decomposed separately. If it is not block diagonal, but a submatrix has a special

property that allows a faster decomposition, the generic blockwise decomposition of

Equation 115 allows to decompose it separately. This happens if most of the datapoints

follow the requirements of one of the other special decompositions, but some don’t.

Low rank approximation It is possible to extract a subset of 𝑟 eigenspaces of a

matrix in 𝑂(𝑟𝑛2), leading to a low-rank approximation of the matrix. The algorithms

are iterative and use only matrix-vector multiplications. If the matrix properties allow

faster matmul, the 𝑛2 factor can be reduced accordingly.

For generic matrices, the algorithms are slower than generic decompositions, so

they are convenient either for very small 𝑟 and large 𝑛, or for special matrices, and if

it makes sense to expect strong degeneracy.

Conjugate gradient Conjugate gradient algorithms solve positive definite linear

systems only with matrix-vector multiplications. If the convergence is good, the num-

ber of iterations is independent of 𝑛, making the complexity proportional only to the

matmul one. The convergence depends on the separation of the eigenvalues, which

should be close to each other. Ill-conditioned matrices, like many covariance matrices,

need preconditioning, which makes the method nontrivial to use. This is the state of

the art method to handle large 𝑛 without approximations.

Low rank matrices If a matrix can be written as 𝐶 = 𝐴Σ𝐴⊤
with 𝐴 a tall 𝑚 × 𝑛

matrix, i.e., Σ smaller than 𝐶, then the pseudoinverse of 𝐶 can be computed with the

thin SVD of 𝐴, which takes 𝑂(𝑛2𝑚):

𝐴 = 𝑈𝑆𝑊 ⊤, 𝑈 (𝑚 × 𝑛), 𝑆, 𝑊 (𝑚 × 𝑚),
𝐶+ = 𝑈𝑆−1𝑊 ⊤Σ−1𝑊𝑆−1𝑈⊤. (80)

Even if 𝑈 is not a full orthogonal matrix, contraction along the longer side produces

the identity: 𝑈⊤𝑈 = 𝐼 . Alternatively with the thin QR:

𝐴 = 𝑄𝑅, 𝑄(𝑚 × 𝑛), 𝑅(𝑛 × 𝑛),
𝐶+ = 𝑄𝑅−⊤Σ−1𝑅−1𝑄⊤. (81)
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If Σ is not invertible, decompose it as Σ = 𝐿𝐿⊤ and fall back to the previous case with

𝐶 = (𝐴𝐿)𝐼 (𝐴𝐿)⊤. The QR method will work only if 𝐿 is full rank.

Woodbury If a full rank matrix is added to a low-rank one, the inversion can be

reduced to the inversion of a smaller matrix using the Woodbury identity:

𝐶 = 𝐴Σ𝐴⊤ + 𝑉 ,
𝐶−1 = 𝑉 −1 − 𝑉 −1𝐴⊤(𝐴⊤𝑉 −1𝐴 + Σ−1)−1𝐴𝑉 −1. (82)

This formula is convenient if 𝑉 is fixed and can be inverted once, while Σ, smaller than

𝑉 , depends on parameters and its decomposition needs to be recomputed frequently.

See section A.2 for alternatives when Σ and/or 𝑉 are not invertible. This is the case

of the PDF fit, since the grid is smaller than the number of datapoints, and the data

error covariance is given.

4.6 Software
Unfortunately there is not a single software for Gaussian process regression that im-

plements all the useful algorithms. There are many choices, each specialized to par-

ticular cases. The most general-purpose tool, which I consider as default choice, is

the popular probabilistic programming tool PYMC (www.pymc.io), which has good

GP support. GPyTorch (gpytorch.ai) instead is the state of the art for scaling to large

datasets with brute force when no decomposition trick applies. For the rest, see the

comparison page on Wikipedia (Comparison of Gaussian process software). If you

know of another software not listed there, please drop me a line!

4.7 Positivity constraint
The positivity constraint on the PDFs does not play nicely with the Normal distribu-

tion because it is not linear. It is very not linear. If we wrote the PDFs as nonlinear

positive transformations of latent Gaussian processes, then we would not be able any-

more to impose exactly the sum rules using kernel derivatives.

If the final errors are small enough, such that the data pushes the functions mostly

away from zero, the solution is sampling from the posterior on a finely spaced grid

and removing all samples where one of the PDFs in one point is below zero. This

works because truncating the support of the distribution can be equivalently done on

the prior or on the posterior, Bayes can only change ratios of probabilities.

To make the sampling efficient it is important that the posterior PDFs are never

below zero with nonnegligible probability. This will probably require excluding most

of the region at low 𝑥 with weak information. Samples are relatively cheap to generate

once the covariance matrix has been decomposed, so it is convenient to sample many

times for each hyperparameter sample. Try this R pack-
ages: tmvtnorm,
TruncatedNormal.
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5 PDF GP prior
To express the fact that we expect the variation of the PDFs to increase arbitrarily as

𝑥 → 0+, we use the Gibbs kernel (Rasmussen and Williams 2006, p. 93): This kernel means we as-
sume the PDFs are 𝐶∞.
What does the theory say?
𝐶2?

𝑘(𝑥, 𝑥′) = 𝜎2

√
2𝓁(𝑥)𝓁(𝑥′)

𝓁2(𝑥) + 𝓁2(𝑥′)
exp(−

(𝑥 − 𝑥′)2

𝓁2(𝑥) + 𝓁2(𝑥′))
, (83)

where 𝓁(𝑥) gives the correlation length at 𝑥 and 𝜎2
is a variance hyperparameter. An

alternative could be transforming 𝑥 to have uniform correlation length and then use

a stationary kernel. We take the lengthscale to be uniform w.r.t. log(𝑥 + 𝜀), so

𝓁(𝑥) =
𝓁0

𝜕 log(𝑥 + 𝜀)/𝜕𝑥
= (𝑥 + 𝜀)𝓁0, (84)

where 𝓁0 is a scale hyperparameter and 𝜀 is a small number to avoid a singularity in 0.

We need to consider the point 𝑥 = 0 because it is one of the endpoints of the sum

rules, but we don’t care about the shape of the function arbitrarily close to 0.

The hyperparameters 𝜎 and 𝓁0 are per-PDF.

The 𝑇∗ functions do not have sum rules, so we assign an independent zero-mean

process with kernel (83) to each of them:

𝑇𝑖 ∼ (0, 𝑘(𝑥, 𝑥′)), 𝑖 ∈ {3, 8, 15}. (85)

The sum rules over the 𝑉∗ functions can be expressed in terms of their primitives,

so we assign an independent process to each of the primitives:

𝑉𝑖(𝑥) = �̃� ′
𝑖 (𝑥), �̃�𝑖 ∼ (0, 𝓁(𝑥)𝑘(𝑥, 𝑥′)𝓁(𝑥′)), 𝑖 ∈ {⋅, 3, 8, 15}, (86)

where we have rescaled the kernel with the lengthscale because the derivative of the

unscaled process would scale in amplitude as 1/𝓁(𝑥). The sum rules then are the simple

linear constraints

�̃� (1) − �̃� (0) = 3, �̃�3(1) − �̃�3(0) = 1,

�̃�8(1) − �̃�8(0) = 3, �̃�15(1) − �̃�15(0) = 3. (87)

For Σ and 𝑔 we have a sum rule written in terms of the primitives of 𝑥Σ(𝑥) and

𝑥𝑔(𝑥) and we want them to go like a power for 𝑥 → 0+. So we define

𝑥Σ(𝑥) = Σ̃′(𝑥), 𝑥𝑔(𝑥) = �̃� ′(𝑥),

Σ̃(𝑥) =
𝑥𝛼Σ+1

𝛼Σ + 2
̃̃Σ(𝑥), �̃�(𝑥) =

𝑥𝛼𝑔+1

𝛼𝑔 + 2
̃̃𝑔(𝑥),

̃̃Σ ∼ (0, 𝑘(𝑥, 𝑥′)), ̃̃𝑔 ∼ (0, 𝑘(𝑥, 𝑥′)), (88)

where 𝛼Σ and 𝛼𝑔 are hyperparameters. Since the lengthscale of
̃̃Σ is 𝓁(𝑥) ≈ 𝑥 , and Σ̃ is

rescaled with 𝑥𝛼Σ+1, 𝑥Σ(𝑥) goes like 𝑥𝛼Σ , with one 𝑥 removed by the derivative due to

the lengthscale. Analogously for 𝑔 . The sum rule becomes

Σ̃(1) + �̃�(1) − Σ̃(0) − �̃�(0) = 1. (89)
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Finally, the constraints at 𝑥 = 1 are

Σ(1) = 0, 𝑔(1) = 0, 𝑉𝑖(1) = 0, 𝑇𝑖(1) = 0. (90)

To build the prior covariance matrix for this model, it is necessary to compute

the various cross kernels implied by Equations 86 and 88, and the covariance blocks

between the data and the quantities in Equations 87, 89 and 90. As an example, we

show the calculation of the 1 × 𝑛 covariance block between �̃� (1) − �̃� (0) and some

hypothetical data which depends linearly on 𝑉 as 𝐲 = 𝑀𝑉 (𝐱):

Cov[�̃� (1) − �̃� (0), 𝑀𝑉 (𝐱)] = Cov[�̃� (1), 𝑉 (𝐱)]𝑀⊤ − Cov[�̃� (0), 𝑉 (𝐱)]𝑀⊤,

Cov[�̃� (1), 𝑉 (𝐱)] = 𝑘�̃� ,𝑉 (1, 𝐱),

Cov[�̃� (0), 𝑉 (𝐱)] = 𝑘�̃� ,𝑉 (0, 𝐱),

𝑘�̃� ,𝑉 (𝑥, 𝑥
′) = Cov[�̃� (𝑥), 𝑉 (𝑥′)] = Cov[�̃� (𝑥), �̃� ′(𝑥′)] =

= 𝜕𝑥′𝑘�̃� (𝑥, 𝑥
′). (91)

6 Models
I am developing a general purpose Python package, lsqfitgp1

, to implement the

analysis (https://github.com/Gattocrucco/lsqfitgp). The software allows to

express directly the model as written in section 5 and generates automatically the ma-

trices. It implements the techniques described in the previous sections for inference.

The interface is inspired by the lsqfit package by Peter G. Lepage (the inventor of

the VEGAS Monte Carlo integrator) which he uses for the analysis of lattice QCD

calculations (Lepage and Gohlke 2021).

Currently I am not using real data. I only use data simulated from the prior and

check the consistency (what is known in Physics as “closure test”). I deem it prudent

to only ever test the inference on fake data until I feel confident about the analysis.

I know all too well the bias that can arise from human judgement, particularly here

where the data has been analyzed and reanalyzed for years. I don’t know myself

QCD beyond “there are quarks, gluons and 𝑆𝑈3 somewhere and Jews,” so I don’t have

personal expectations about what is the right result, and this is a feature.

The following table describes the tests and iterations I have done over time, listing

their features. For each version of the analysis there is a pointer to a section below

which explains the details, and a link to online documentation with the output figure

and the complete code.

1
No, -gp does not stand for my initials.
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Features:

Sec. Link Data Grid Time Works Constr. Hyp. Nonlin. Tables

1 pdf1 20 8 × 30 1 s X X

2 pdf2 20 8 × 30 1 s X X

3 pdf3 20 9 × 30 1 s X X

4 pdf4 20 9 × 30 5 s X X X

5 pdf5 20 9 × 30 20 s X X 10

6 pdf6 20 9 × 30 15 s X X 10 X

7 pdf7 20 9 × 30 35min X X 10 X

8 pdf8 20 9 × 49 1 hour X X X 10 X

9 pdf9 3000 9 × 34 1min ∼ X X

10 pdf10 3000 9 × 34 1min ∼ X X

Column Meaning

Data Total number of datapoints

Grid Number of PDF functions × number of 𝑥 points the data is linked to

Time Total running time measured on my laptop

Constr. Informative prior with sum rules

Hyp. Free hyperparameters with inference

Nonlin. Number of datapoints with nonlinear link to PDFs

Tables Free FK tables with inference

Models 1 to 7 have an unrealistic simplified prior, different from the one described

in section 5, and a small number of datapoints. They are proof of concepts that test

each of the features in turn. Model 8 uses the realistic prior, but still with a small

amount of data. Model 9 takes a step back and tries to scale to a full dataset with less

features than model 8.

We always check that the sum rules are satisfied both in the fake PDFs drawn from

the prior and in the posterior, using an approximate integration with the trapezoid

rule. When hyperparameters are free, we represent their prior with a Gaussian copula,

i.e., fixed transformations of the hyperparameters have a joint Normal distribution.

The FK tables are generated randomly.

Model 1 A basic test with only Gaussian process regression and an unrealistic prior.

Model 2 An improvement over model 1 in the way the model is written, the rest

being equal.

Model 3 GP regression with more realistic (but not correct) constraints written in

the flavor basis.

Model 4 Adds scale, variance and correlation decay behavior as free hyperparame-

ters to model 3.

Model 5 Uses a quadratic link for half the datapoints in model 3, without free hyper-

parameters.

Model 6 Adds errors on the FK tables to model 5, with covariance matrix rank 9.
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Model 7 Adds a single free scale hyperparameter to model 6. The inference is very

slow and overconfidently misses some of the true PDF functions.

Model 8 Uses the realistic prior in the evolution basis, with a small amount of dat-

apoints, but with all features (inference over hyperparameters and FK tables,

nonlinear observables). As model 7, it is very slow. The result is shown in Fig-

ure 1. The closure test is successful. The hyperparameters are fixed to their

MAP, reported in the following table:

Transf. parameter True MAP Parameter True MAP

log(scale) -1.3 -1.2 scale 0.28 0.29

U(alpha Sigma) 0.23 0.22 alpha Sigma 0.090 0.087

U(alpha g) 0.72 0.081 alpha g 0.27 0.032

The inference does not seem to recover correctly 𝛼𝑔 .

Model 9 Implements the prior of section 5, but with the same scale and variance pa-

rameters shared by all PDFs. The posterior of the hyperparameters is Hessian-

Laplace-approximated. The 𝑥 grid is the standard NNPDF grid, and the data is

linked only to points with 𝑥 > 1 × 10−4. Includes only data with linear link, but

with a realistic amount of datapoints (3000). The FK tables are fixed, filled to

resemble qualitatively the real FK tables, and scaled using the true values of the

exponents for 𝑥 → 0 to avoid yielding very large observable values, which may

give numerical problems. Mostly ok, but the uncertainty on the hyperparame-

ters is a bit overconfident. Half of the running time, 30 s, is spent compiling the

likelihood and its derivatives with JAX.

Model 10 Same as model 9, but with per-PDF scale and variance hyperparameters.

Results similar to 9. Shown in Figures 2, 3, 4.
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A Matrix formulae
For textbook references see Bernstein (2018) and Schott (2017).

A.1 Pseudoinverse
The pseudoinverse of any matrix 𝐴 (also rectangular) is the unique matrix 𝐴+

that

satisfies the following “Moore-Penrose conditions:”

𝐴𝐴+𝐴 = 𝐴, 𝐴+𝐴𝐴+ = 𝐴+, 𝐴𝐴+ = (𝐴𝐴+)⊤, 𝐴+𝐴 = (𝐴+𝐴)⊤. (92)
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The order of these conditions is fixed by convention and relevant for some notations.

𝐴+
can be computed with

𝐴+ =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐴⊤(𝐴𝐴⊤)−1 if 𝐴𝐴⊤
is invertible,

(𝐴⊤𝐴)−1𝐴⊤
if 𝐴⊤𝐴 is invertible,

𝑈𝑆+𝑉 ⊤
where 𝐴 = 𝑉 𝑆𝑈⊤

is the SVD of 𝐴.

(93)

The matrices

𝐴𝐴+, 𝐴+𝐴, 𝐼 − 𝐴𝐴+, 𝐼 − 𝐴+𝐴 (94)

are the orthogonal projectors on the ranges and kernels of 𝐴 and 𝐴⊤
. You can remem-

ber which is which by looking at what space the matrix on the right eats, 𝐴 input,

𝐴+
output. Under orthogonal transformations, 𝐴+

transforms like 𝐴⊤
. Some useful

properties and identities are

(𝐴⊤)+ = (𝐴+)⊤, (95)

(𝐴𝐴⊤)+ = 𝐴+⊤𝐴+, (96)

𝐴+ = (𝐴⊤𝐴)+𝐴⊤ = 𝐴⊤(𝐴𝐴⊤)+ = (97)

= lim
𝜀→0+

𝐴⊤(𝐴𝐴⊤ + 𝜀𝐼 )−1 = lim
𝜀→0+

(𝐴⊤𝐴 + 𝜀𝐼 )−1𝐴⊤ = (98)

=
∞

∑
𝑛=1

𝐴⊤(𝐴𝐴⊤ + 𝐼 )−𝑛 =
∞

∑
𝑛=1

𝐴(𝐴3 + 𝐼 )−𝑛𝐴

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
if 𝐴 ≥ 0

. (99)

A matrix 𝐴−
which satisfies the first Moore-Penrose condition, i.e., 𝐴𝐴−𝐴 = 𝐴, is

called a generalized inverse of 𝐴. It is not unique, in particular any two generalized

inverses 𝐴−
and �̃�−

are connected by the relation

�̃�− = 𝐴− + 𝐶 − 𝐴−𝐴𝐶𝐴𝐴−
(100)

for some 𝐶. A matrix 𝐴𝐿
which satisfies the first and third conditions, 𝐴𝐴𝐿𝐴 = 𝐴,

(𝐴𝐴𝐿)⊤ = (𝐴𝐴𝐿), is called a least-squares inverse. Compared to 𝐴−
, it has the addi-

tional properties

𝐴𝐴𝐿 = 𝐴𝐴+, 𝐴𝐿 = (𝐴⊤𝐴)−𝐴⊤. (101)

The pseudodeterminant pdet𝐴 of a symmetric matrix𝐴 is the product of its nonzero

eigenvalues. An useful formula is

log pdet𝐴 = log det �̃� − tr(𝐼 − 𝐴𝐴+) log 𝜀, �̃� = 𝐴 + 𝜀(𝐼 − 𝐴𝐴+),

�̃�−1 = 𝐴+ +
𝐼 − 𝐴𝐴+

𝜀
. (102)

A.2 Woodbury identity
The Woodbury identity is

(𝐴 + 𝐿𝐵𝑅)−1 = 𝐴−1 − 𝐴−1𝐿(𝐵−1 + 𝑅𝐴−1𝐿)−1𝑅𝐴−1, (103)
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with 𝐴, 𝐵 square invertible and 𝐿, 𝑅 any matrices. If 𝐵 is not invertible or also rectan-

gular, by making the substitutions 𝐵 ↦ 𝐼 and 𝑅 ↦ 𝐵𝑅 or 𝐿 ↦ 𝐿𝐵, it becomes

(𝐴 + 𝐿𝐵𝑅)−1 = 𝐴−1 − 𝐴−1𝐿(𝐼 + 𝐵𝑅𝐴−1𝐿)−1𝐵𝑅𝐴−1 =
= 𝐴−1 − 𝐴−1𝐿𝐵(𝐼 + 𝑅𝐴−1𝐿𝐵)−1𝑅𝐴−1. (104)

By making other substitutions we obtain the following useful particular cases:

(𝐴−1 + 𝐵−1)−1 = 𝐴 − 𝐴(𝐴 + 𝐵)−1𝐴, (105)

(𝐴−1 + 𝐵)−1 = 𝐴 − 𝐴(𝐼 + 𝐵𝐴)−1𝐵𝐴 = (106)

= 𝐴 − 𝐴𝐵(𝐼 + 𝐴𝐵)−1𝐴, (107)

(𝐴−1 + 𝐵𝐵⊤)−1 = 𝐴 − 𝐴𝐵(𝐼 + 𝐵⊤𝐴𝐵)−1𝐵⊤𝐴. (108)

Some related identities are Pseudoinverse version of
the second and third iden-
tities?det(𝐴 + 𝐿𝐵𝑅) = det𝐴 det𝐵 det(𝐵−1 + 𝑅𝐴−1𝐿), (109)

(𝐵−1 + 𝑅𝐴−1𝐿)𝐵𝑅 = 𝑅𝐴−1(𝐴 + 𝐿𝐵𝑅), (110)

𝐵𝑅(𝐴 + 𝐿𝐵𝑅)−1 = (𝐵−1 + 𝑅𝐴−1𝐿)−1𝑅𝐴−1. (111)

If neither 𝐴 nor 𝐵 nor 𝐴 + 𝐿𝐵𝑅 are invertible, there is not a general formula for

the pseudoinverse, unless they are nonnegative definite matrices (i.e., covariance ma-

trices), in which case rewrite as 𝐴 + 𝐿𝐿⊤

(𝐴𝐴⊤ + 𝐵𝐵⊤)+ = (𝑍𝑍⊤)+ + (𝐼 − 𝐵𝑍+)⊤𝐴+⊤𝐸𝐴+(𝐼 − 𝐵𝑍+),
𝑍 = (𝐼 − 𝐴𝐴+)𝐵,
𝐸 = 𝐼 − 𝐴+𝐵(𝐼 − 𝑍+𝑍)𝐹−1(𝐴+𝐵)⊤,
𝐹 = 𝐼 + (𝐼 − 𝑍+𝑍)𝐵⊤(𝐴𝐴⊤)+𝐵(𝐼 − 𝑍+𝑍). (112)

For the pseudodeterminant, if 𝐴 is symmetric and im 𝐿 ⊆ im𝐴, then What for arbitrary kernels?
Also, I think this holds
for nonsymmetric 𝐴 with a
pair of conditions. Prob-
lem: the formula is wrong,
take 𝐴 = 𝐼2, 𝐵 = −𝐼1, 𝐿 =
[1, 0], then the pdet is 1 but
the rhs gives 1⋅1⋅(1−1) = 0.
I guess 𝐵 ≥ 0 fixes it.

pdet(𝐴 + 𝐿𝐵𝐿⊤) = pdet𝐴 det𝐵 det(𝐵−1 + 𝐿⊤𝐴+𝐿). (113)

A.3 Blockwise operations
Given a matrix divided in blocks as

𝑀 = (
𝐴 𝐿
𝑅 𝐵) ,

the Schur complement of 𝐴 in 𝑀 is

𝑀/𝐴 = 𝐵 − 𝑅𝐴−1𝐿. (114)

Fixing 𝑄 = 𝑀/𝐴, the inverse and determinant of 𝑀 can be written as

(
𝐴 𝐿
𝑅 𝐵)

−1

= (
𝐴−1 + 𝐴−1𝐿𝑄−1𝑅𝐴−1 −𝐴−1𝐿𝑄−1

−𝑄−1𝑅𝐴−1 𝑄−1 ) , (115)

det(
𝐴 𝐿
𝑅 𝐵) = det𝐴 det𝑄. (116)
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If 𝑀 is nonnegative definite, its block Cholesky decomposition is

𝑀 = (
𝐴 𝑅⊤

𝑅 𝐵 ) = 𝑐(𝑀)𝑐(𝑀)⊤,

𝑐(𝑀) = (
𝑐(𝐴) 0

𝑅𝑐(𝐴)−⊤ 𝑐(𝐵 − 𝑅𝐴−1𝑅⊤)) , (117)

and Equation 115 is also valid replacing inverses with generalized inverses:

(
𝐴 𝑅⊤

𝑅 𝐵 )

−

= (
𝐴− + 𝐴−𝑅⊤𝑄−𝑅𝐴− −𝐴−𝑅⊤𝑄−

−𝑄−𝑅𝐴− 𝑄− ) , 𝑄 = 𝐵 − 𝑅𝐴−𝑅⊤, (118)

where 𝑄 is called the generalized Schur complement. The formula for the pseudoin-

verse is longer, see Schott (2017, th. 7.13, p. 300). And the pseudodetermi-
nant?

A.4 Derivatives

𝜕𝐴−1 = −𝐴−1𝜕𝐴𝐴−1, (119)

𝜕 log det𝐴 = tr(𝐴−1𝜕𝐴), (120)

𝜕𝐴+ = −𝐴+𝜕𝐴𝐴+ + 𝐴+𝐴+⊤𝜕𝐴⊤(𝐼 − 𝐴𝐴+) + (𝐼 − 𝐴+𝐴)𝜕𝐴⊤𝐴+⊤𝐴+, (121)

𝜕(𝐴𝐴+) = (𝐼 − 𝐴𝐴+)𝜕𝐴𝐴𝐿 + 𝐴𝐿⊤𝜕𝐴⊤(𝐼 − 𝐴𝐴+), (122)

𝜕(𝐴+𝐴) = 𝐴+𝜕𝐴(𝐼 − 𝐴+𝐴) + (𝐼 − 𝐴+𝐴)𝜕𝐴⊤𝐴+⊤, (123)

0 = (𝐼 − 𝐴𝐴+)𝜕𝐴(𝐼 − 𝐴+𝐴), (124)

𝜕 log pdet𝐴 = tr(𝐴+𝜕𝐴) (𝐴 = 𝐴⊤), (125)

where the formulas for degenerate 𝐴 work for points where the rank of 𝐴 does not

change. Reference for the pseudodeterminant: Holbrook (2018, eq. 2.43, p. 302). Proof of the pseudodeter-
minant derivative: start
from 𝜕 det(𝐴 + (𝐼 − 𝐴𝐴+)).
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