
Bias Correction for Nonlinear Least Squares

Giacomo Petrillo, University of Pisa

June 25, 2019

Abstract

We correct the bias of the least squares estimator by approximating
it to second order and find this performs slightly worse than a known
least squares-specific correction which can be seen as a special case
of ours. We illustrate clearly how to implement such corrections and
we advocate for addition to generic least squares fitting programs by
showing an example which may look “innocent” but has a significative
bias. The algorithm is computationally light and requires only up to
the second derivatives of the model function.

1 Introduction
Let y ∈ RN be a random variable with a probability distribution that
depends on parameters θ ∈ RK , with covariance matrix

Vij ≡ Cov[yi, yj] (1)

that does not depend on θ, and mean given by the function

µ(θ) ≡ E[y|θ]. (2)

The generalized least squares estimator for θ is defined as the θ̂(y)
that minimizes the quadratical form Q(y,θ) given below:

Q(y,θ) ≡ 1

2
(y − µ(θ))>V −1(y − µ(θ)), (3)

θ̂(y) ≡ arg min
θ

Q(y,θ). (4)

It holds that if µ(θ) is linear in θ, then θ̂(y) is unbiased (i.e.
E[θ̂(y)|θ0] = θ0) and efficient (i.e. has the minimum variance possi-
ble) [1]. In general this is not true, but in practice it works well even if
µ(θ) is nonlinear. In this article we will derive a general way to correct

1

the bias of the estimator in the nonlinear case, i.e. find B(y) such that
E[θ̂(y)−B(y)|θ0] is closer to θ0 than E[θ̂(y)|θ0], and compare it to
an already known procedure [2].

For convenience, we will fix Vij = δij , i.e. all yi are uncorrelated
and with unitary variance, because otherwise y can be put in this
form with the following standard transformation: using the Cholesky
decomposition, V is written as V = LL>, where L is a lower trian-
gular matrix. It is easily verified that the variables y′ ≡ L−1y have
covariance Cov[y′i, y

′
j] = δij . So, (3) becomes just the sum of squares

Q(y′,θ) =
1

2
(y′ − µ′(θ))>(y′ − µ′(θ)), (5)

where µ′ ≡ L−1µ. In the following derivations, you can check that the
transformation, being linear, does not affect the validity of the results.

2 Generic Second Order Bias Correc-
tion
In this section we derive a general bias correction procedure that will
be shown later to apply to the case of the least squares estimator.

Let x ∈ RN be a random variable with mean µ and f : RN → R a
real-valued function. Our goal is to correct the bias of f(x) considered
as estimator of f(µ).

To this end, we expand f in Taylor series around µ up to second
order

f(x) ≈ f(µ)

+
∑
i

∂f

∂xi
(µ)(xi − µi)

+
1

2

∑
ij

∂2f

∂xi∂xj
(µ)(xi − µi)(xj − µj), (6)

and compute the expected value of f(x) with this expansion, obtaining
the well-known formula

E[f(x)] ≈ f(µ) +
1

2

∑
ij

∂2f

∂xi∂xj
(µ) Cov[xi, xj]. (7)

We now just subtract the quadratic term of (7) from f(x), but evalu-
ating the second derivative of f in x instead of µ because the estimator
must be a function of “data” only:

f2(x) ≡ f(x)− 1

2

∑
ij

∂2f

∂xi∂xj
(x) Cov[xi, xj]. (8)

2

To evaluate the bias of (8), we expand ∂ijf in Taylor series up to first
order and f up to third order around µ, obtaining:

E[f2(x)] ≈ f(µ) +
1

6

∑
ijk

∂3f

∂xi∂xj∂xk
(µ)Cijk, (9)

where Cijk ≡ E[(xi − µi)(xj − µj)(xk − µk)], (10)

so f2(x) is an unbiased estimator of f(µ) up to second order of f . If in
(8) we replace Cov[xi, xj] with an unbiased estimator of it, the result
still holds apart eventually from the next order term shown in (9).

3 Bias Correction of the Least Squares
Estimator
We now apply the formalism of section 2 to the least squares estimator
defined in section 1. Let us copy here the relevant definitions from
section 1:

• y ∈ RN has mean µ(θ), with θ ∈ RK , and covariance matrix
Cov[yi, yj] = δij ;

• Q(y,θ) ≡ 1
2(y − µ(θ))>(y − µ(θ)), θ̂(y) ≡ arg minθ Q(y,θ).

We observe that θ̂ has the property that θ̂(µ(θ0)) = θ0 because,
assuming Q has only one minimum (otherwise θ̂ would not be well
defined), the point Q(µ(θ0),θ0) = 0 must be the minimum since Q ≥
0. This means that we are in the case studied in section 2 with θ̂
and y taking the role of f and x respectively, so we apply formula (8)
obtaining

θ̂2(y) ≡ θ̂(y)−B(y), (11)

where B(y) ≡ 1

2

∑
i

∂2θ̂

∂y2i
(y). (12)

The point now is computing ∂2θ̂/∂y2i . Let us use latin indices for
the y vector and greek indices for the θ vector. At the minimum, the
gradient of Q is zero, so we have

0 = Gα(y) ≡ gα(y, θ̂(y)), (13)

where gα(y,θ) ≡ ∂Q

∂θα
(y,θ). (14)

3

We compute the first and second derivatives of Gα:

0 =
∂Gα
∂yi

=
∂gα
∂yi

+
∑
β

∂gα
∂θβ

∂θ̂β
∂yi

, (15)

0 =
∂2Gα
∂yi∂yj

=
∂2gα
∂yi∂yj

+
∑
β

(
∂2gα
∂yi∂θβ

∂θ̂β
∂yj

+
∂2gα
∂yj∂θβ

∂θ̂β
∂yi

)

+
∑
βγ

∂2gα
∂θβ∂θγ

∂θ̂β
∂yi

∂θ̂γ
∂yj

+
∑
β

∂gα
∂θβ

∂2θ̂β
∂yi∂yj

, (16)

where we implicitly intend that all derivatives of gα are evaluated at
(y, θ̂(y)) and all derivatives of θ̂ at y. Defining

Aαβ ≡
∂gα
∂θβ

, (17)

B(i)
α ≡ −

∂gα
∂yi

, (18)

C(ij)
α ≡ − ∂2gα

∂yi∂yj
−
∑
β

(
∂2gα
∂yi∂θβ

∂θ̂β
∂yj

+
∂2gα
∂yj∂θβ

∂θ̂β
∂yi

)

−
∑
βγ

∂2gα
∂θβ∂θγ

∂θ̂β
∂yi

∂θ̂γ
∂yj

, (19)

we can rewrite equations (15) and (16) as

A∂iθ̂ = B(i), (20)

A∂ij θ̂ = C(ij). (21)

So, to compute ∂ij θ̂, we have to:

1. compute A (17) and B (18) at the minimum with gα defined in
(14);

2. solve the linear system (20) to find ∂iθ̂ for all i;

3. compute C (19) using ∂iθ̂ from the previous step;

4. solve the linear system (21) for all i, j (actually, we just need the
diagonal i = j).

4

Note that the matrix A is always the same for all i, j so solving the
linear systems is computationally light. We now report explicitly the
derivatives of gα:

∂gα
∂θβ

=
∑
i

(
∂µi
∂θα

∂µi
∂θβ
− (yi − µi)

∂2µi
∂θα∂θβ

)
, (22)

∂gα
∂yi

= − ∂µi
∂θα

, (23)

∂2gα
∂yi∂yj

= 0, (24)

∂2gα
∂yi∂θβ

= − ∂2µi
∂θα∂θβ

, (25)

∂2gα
∂θβ∂θγ

=
∑
i

(
∂2µi
∂θα∂θβ

∂µi
∂θγ

+
∂2µi
∂θβ∂θγ

∂µi
∂θα

+
∂2µi
∂θγ∂θα

∂µi
∂θβ

− (yi − µi)
∂3µi

∂θα∂θβ∂θγ

)
. (26)

Since we are dealing with power series, we expect that sometimes
the second order bias correction (12) may yield a very large value
that completely spoils the result. However, it is easy to check if the
correction is too large by comparing it to the covariance matrix of θ̂(y)
as estimated by the standard formula

Cov[θ̂α(y), θ̂β(y)] ≈ (H(θ̂(y))−1)αβ, (27)

where Hαβ(θ) ≡
∑
i

∂µi
∂θα

(θ)
∂µi
∂θβ

(θ). (28)

(If µ(θ) is linear, H−1 is the exact covariance matrix of θ̂(y).) In
particular, the following quantity shall be checked to be less than a
fixed threshold:

B(y)>H(θ̂(y))B(y). (29)

The reason for using H(θ̂(y)) is that it is stable. What we need here is
a measure of scale with low variance, not an unbiased estimate of the
actual covariance matrix of our bias-corrected estimator θ̂2. Formula
(29) is quadratical so the threshold should be thought of as “the square
of a number of standard deviations”.

When it happens that (29) is larger than the chosen threshold, the
only option is to not apply the correction. This will implicitly change
the estimator we are using, because the choice is based on the observed
data, but the effect should be small if we are prudent in the threshold
we choose (e.g. at least 32 = 9).

5

Another caveat is that the variance of θ̂2 will be larger than the
variance of θ̂. Computing E[θ̂2αθ̂2β] expanding f and its derivatives
to second order like in section 2, it can be shown that

Vαβ(y) ≡ ∂iθ̂α∂iθ̂β

+
1

2
(∂iθ̂α∂jkθ̂β + ∂iθ̂β∂jkθ̂α)Vijk

+
1

4
∂ij θ̂α∂klθ̂β(Vijkl − VijVkl − 4VikVjl), (30)

where the derivatives of θ̂ are evaluated at y, the latin indices are
summed over,

Vijk ≡ E[(yi − µi)(yj − µj)(yk − µk)] (31)
and Vijkl ≡ E[(yi − µi)(yj − µj)(yk − µk)(yk − µl)], (32)

is an unbiased (up to second order of θ̂) estimator of Cov[θ̂2α, θ̂2β]. To
use formula (30) in practice it is necessary to make assumptions about
Vijk and Vijkl. A simpler formula, but still different from the H−1 in
(27), is obtained with first order error propagation, i.e. dropping all
the terms with second derivatives in (30):

V
(1)
αβ (y) ≡

∑
i

∂θ̂α
∂yi

∂θ̂β
∂yi

, (33)

which is readily available since ∂iθ̂ has already been computed.
If we remove the terms with (yi − µi) in (22) and (26), i.e. if y =

µ(θ̂(y)), the complete formula for B(y) simplifies a bit and can be
written concisely as

B(y) =
if y=µ(θ̂(y))

−1

2

∑
iβγδ

(H−1)αβ
∂µi
∂θβ

∂2µi
∂θγ∂θδ

(H−1)γδ, (34)

where H is defined in (28). This is exactly the same formula obtained
by [2], equation 2.20. You can convince yourself that B(y) in (12)
is not in general expressed by (34) by noting that in (26) there is a
third derivative of µ(θ), while in (34) there are only up to second
derivatives of µ. Effectively, [2] derives its result computing the bias
and then replacing the true value θ with θ̂(y), so the terms yi − µi
disappear in taking expectations.

4 Example
We apply the method to an example that we know to suffer from a
significative bias, which is fitting an oscillating curve with errors on
the “explanatory variable”.

6

We have measurements x ∈ RM , t ∈ RM which are unbiased es-
timators of the true values x̄, t̄, constrained by the relation x̄i =
p0 cos(t̄i/p1). Formulating everything with our precedent notations,
we have

y = (t1, . . . , tM , x1, . . . , xM), (35)
θ = (p0, p1, t̄1, . . . , t̄M), (36)

µ(θ) = (t̄1, . . . , t̄M , p0 cos(t̄1/p1), . . . , p0 cos(t̄M/p1)). (37)

For simplicity we set Cov[yi, yj] = δij .
We have written an inefficient but quick implementation, reported

in Appendix A, that checks the properties of the estimator using Monte
Carlo. The results are reported in detail in Figure 1. We also check for
comparison the bias correction from [2] which is given by using (34)
even if y 6= µ(θ̂(y)).

Comment on Figure 1: the two corrections have, within Monte
Carlo sample uncertainty, the same mean (id est they correct the bias
the same), but the correction obtained by approximating the estima-
tor as a paraboloid (12) has higher variance than (34). The bias is
significative, about half the standard deviation, and gets reduced to
about one tenth by the corrections. Formula (33) for the variance of
θ̂2 has surely higher mean, but for parameter p1 it has a quite long
tail, so the standard formula (27) is probably better in general.

5 Conclusion
We have shown in detail how to correct the bias of the least squares
estimator by using a parabolic approximation of the estimator. Let us
outline the complete algorithm:

1. reformulate the problem using the transformation given at the
end of section 1;

2. mimimize the sum of squares by any standard algorithm;

3. use equations 22 to 26 to compute the terms in (17) to (19) and
solve the linear systems (20) and (21);

4. compute the bias correction using (12);

5. check that (29) is less than a fixed threshold, if it is not, do not
use the correction.

Since in the example (Figure 1) the correction performs slightly
worse than the simpler to compute (34) already known in the litera-
ture, we actually advise to use (34). Nevertheless, let us comment for
completeness on our algorithm. Up to the third derivatives of µ(θ)

7

4 6 8 10 12
parameter 0

0.0

0.2

0.4

0.6

no
rm

al
ize

d
co

un
ts

Parameter 0 estimator
true value
least squares...
(bias = 0.315+/-0.019,
std = 0.61)
...with correction (12)
(bias = 0.048+/-0.021,
std = 0.68)
...with correction (34)
(bias = 0.056+/-0.019,
std = 0.61)

2 4 6 8 10
parameter 1

8

10

12

14

pa
ra

m
et

er
 0

Parameters (0, 1)
true value
least squares
correction (12)
correction detected too large

0 5 10 15 20 25 30
t

10

5

0

5

10

x

Example dataset

simulated data
true points

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
parameter 1

0

1

2

3

4

5
no

rm
al

ize
d

co
un

ts
Parameter 1 estimator

true value
least squares...
(bias = 0.0037+/-0.0029,
std = 0.092)
...with correction (12)
(bias = 0.0020+/-0.0032,
std = 0.1)
...with correction (34)
(bias = 0.0036+/-0.0029,
std = 0.092)

0.6 0.8 1.0 1.2 1.4
sdev of parameter 0

0

1

2

3

4

5

no
rm

al
ize

d
co

un
ts

Standard deviation of parameter 0 est.
sample sdev of noncorrected (0.61)
sample sdev w. correction (12) (0.68)
eq. 27
eq. 33
(or eq. 27 when correction too large)

0.08 0.10 0.12 0.14 0.16 0.18 0.20
sdev of parameter 1

0

20

40

60

80

no
rm

al
ize

d
co

un
ts

Standard deviation of parameter 1 est.
sample sdev of noncorrected (0.092)
sample sdev w. correction (12) (0.1)
eq. 27
eq. 33
(or eq. 27 when correction too large)

Figure 1: Monte Carlo study of the bias correction to the case defined in section 4,
i.e. fitting x = p0 cos(t/p1) with errors on both x and t. The data is simulated 1000
times. The true values of the parameters are fixed to p0 = 10, p1 = 4. The plots with
histograms on the first two rows show the distributions of the least squares estimator
(filled gray), of the estimator corrected with (12) (solid line), and of the estimator
corrected with (34) (dashed line). The correction (12) is applied only when (29) is less
than 25. In the scatter plot, differently from the histograms, the correction is always
applied and marked with a “×” when it is not applied in the histograms.

8

are required, but with modern computational tools the derivatives can
be evaluated automatically. The computational overhead should be
comparable to just minimizing the sum of squares. If the number of
parameters K is large, computing the third derivatives of µ, which are
NK3/6 + O(K2), may become too expensive, but tipically when the
number of parameters is large there is some sparsity in the problem.
The method can be in principle extended to successive orders, but at
order λ would require to evaluate O(K1+λ) derivatives of µ, and it
would require knowledge of higher moments of y.

If one does not have the covariance matrix V of y but an estimate
V̂ of it, V̂ must be unbiased, as is noted at the end of section 2. This
requirement is new compared to linear least squares, where if V is
whatever random matrix with the only constraint of being independent
from y, the least squares estimator is still unbiased (but not minimum
variance).

The correction, although long known, to the knowledge of the au-
thor is not implemented in commonly used least squares fitting pro-
grams. We have provided an example where the bias is half the stan-
dard deviation, and can be made higher by increasing the uncertainties.
Since the casual user may not have the time (or statistical knowledge)
to implement herself a bias correction, we think that fitting programs
should provide the implementation and the option to use it, along with
a brief explanation of what is the bias.

Finally, we consider a further exploitation. Having computed the
second derivatives of the estimator with respect to the data, second
order error propagation can be used to get a wealth of information
about the shape of the distribution of the estimator, and correlation
with the data. For example, if two fits are performed on overlapping
datasets, the overlap would be taken into account transparently and
correlation of the estimates would be known. This has already been
excellently implemented to first order in [4], but using second order
would allow to compute higher order correlation functions and draw a
nontrivial distribution for any multidimensional estimate using e.g. a
maximum entropy estimate, which can feasibly be implemented up to
four dimensions [3] (and, of course, to correct the bias). The author is
currently writing a program with this final goal in mind [5].

References
[1] Aitken, A. C. (1934). On Least-squares and Linear Combinations

of Observations. Proceedings of the Royal Society of Edinburgh.
55: 42–48. https://doi.org/10.1017/S0370164600014346.

9

https://doi.org/10.1017/S0370164600014346

[2] Box, M. J. (1971). Bias in Nonlinear Estimation. Journal of the
Royal Statistical Society. Series B (Methodological), Vol. 33, No. 2,
pp. 171–201. https://www.jstor.org/stable/2985002.

[3] Abramov, R. V. (2009) The Multidimensional Maximum Entropy
Moment Problem: a Review on Numerical Methods. Commun.
Math. Sci. Vol. 8, No. 2, pp. 377–392. https://projecteuclid.
org/euclid.cms/1274816887.

[4] Lepage, G. P. (2008–2019). lsqfit: Utilities for nonlinear
least-squares fits. 10.5281/zenodo.2613676. https://github.com/
gplepage/lsqfit.

[5] Petrillo, G. (2019). uncertainties-cpp: C++ header library for
first- and second-order uncertainty propagation. https://github.
com/Gattocrucco/uncertainties-cpp.

A Computer program
The following Python scripts were tested with Python 3.6.4, numpy
1.16.4, scipy 1.2.1, matplotlib 3.0.2, autograd 1.2, progressbar2
3.38.0, uncertainties 3.0.3. They implement the test described in
section 4, but adapting them to a different model should be quick.
Note that this implementation, due to the use of autograd from the
ground up, is so inefficient that running a Monte Carlo without bias
correction would be faster than a single corrected fit. However, it has
the advantage of not having many chances of error.

1 # file fit.py
2
3 from scipy import optimize, linalg
4 import autograd
5 from autograd import numpy as np
6 from numpy.lib import format as nplf
7 import progressbar
8
9 M = 1000 # number of monte carlo
10 N = 2 # number of parameters
11 def mu(x, p):
12 return p[0] ∗ np.cos(x / p[1])
13 true_x = np.linspace(0, 30, 10)
14 true_par = np.array([10, 4])
15
16 ##################################
17

10

https://www.jstor.org/stable/2985002
https://projecteuclid.org/euclid.cms/1274816887
https://projecteuclid.org/euclid.cms/1274816887
https://github.com/gplepage/lsqfit
https://github.com/gplepage/lsqfit
https://github.com/Gattocrucco/uncertainties-cpp
https://github.com/Gattocrucco/uncertainties-cpp

18 table = nplf.open_memmap(’fit.npy’, mode=’w+’, shape=(M,), dtype=[
19 (’success’, bool),
20 (’estimate’, float, N),
21 (’bias’, float, N),
22 (’standard_bias’, float, N),
23 (’cov’, float, (N, N)),
24 (’standard_cov’, float, (N, N)),
25 (’data_y’, float, len(true_x)),
26 (’data_x’, float, len(true_x)),
27 (’complete_estimate’, float, N + len(true_x)),
28 (’complete_bias’, float, N + len(true_x)),
29 (’complete_cov’, float, (N + len(true_x), N + len(true_x)))
30])
31 table[’success’] = False
32
33 def res(p, data):
34 par = p[:N]
35 x = p[N:]
36 data_x = data[:len(data) // 2]
37 data_y = data[len(data) // 2:]
38 return np.concatenate([data_y − mu(x, par), data_x − x])
39
40 jac = autograd.jacobian(res, 0)
41
42 def Q(p, data):
43 r = res(p, data)
44 return np.sum(r ∗∗ 2)
45
46 f = autograd.jacobian(Q, 0)
47 dfdy = autograd.jacobian(f, 1)
48 dfdp = autograd.jacobian(f, 0)
49 dfdpdy = autograd.jacobian(dfdp, 1)
50 dfdpdp = autograd.jacobian(dfdp, 0)
51
52 true_y = mu(true_x, true_par)
53
54 np.savez(
55 ’fit−info.npz’,
56 true_x=true_x,
57 true_par=true_par,
58 true_y=true_y
59)
60

11

61 def least_squares_cov(result):
62 _, s, VT = linalg.svd(result.jac, full_matrices=False)
63 threshold = np.finfo(float).eps ∗ max(result.jac.shape) ∗ s[0]
64 s = s[s > threshold]
65 VT = VT[:s.size]
66 return np.dot(VT.T / s∗∗2, VT)
67
68 def compute_bias_cov(result, data):
69 dfdy_ = dfdy(result.x, data)
70 dfdp_ = dfdp(result.x, data)
71 dfdpdy_ = dfdpdy(result.x, data)
72 dfdpdp_ = dfdpdp(result.x, data)
73
74 grad = np.linalg.solve(dfdp_, −dfdy_)
75 assert(grad.shape == (N + len(true_x), 2 ∗ len(true_x)))
76
77 cov = np.einsum(’ai,bi−>ab’, grad, grad)
78 assert(np.allclose(cov, cov.T))
79
80 B = (
81 − np.einsum(’abi,bj−>aij’, dfdpdy_, grad)
82 − np.einsum(’abi,bj−>aji’, dfdpdy_, grad)
83 − np.einsum(’abg,bi,gj−>aij’, dfdpdp_, grad, grad)
84)
85 assert(B.shape == (N + len(true_x), 2 ∗ len(true_x), 2 ∗ len(true_x)))
86 B_ = B.reshape(N + len(true_x), 4 ∗ len(true_x) ∗ len(true_x))
87
88 hess = np.linalg.solve(dfdp_, B_)
89 hess = hess.reshape(N + len(true_x), 2 ∗ len(true_x), 2 ∗ len(true_x))
90 assert(np.allclose(hess, np.einsum(’aji’, hess)))
91
92 return 1/2 ∗ np.einsum(’aii’, hess), cov
93
94 for i in progressbar.progressbar(range(M)):
95 data_x = true_x + np.random.randn(len(true_x))
96 data_y = true_y + np.random.randn(len(true_x))
97 data = np.concatenate([data_x, data_y])
98
99 p0 = np.concatenate([true_par, true_x])
100 result = optimize.least_squares(res, p0, jac=jac, args=(data,))
101 if not result.success:
102 print(f’minimization␣failed␣for␣i␣=␣{i}’)
103 continue

12

104
105 bias, cov = compute_bias_cov(result, data)
106 zero_residual_data = np.concatenate([
107 result.x[N:],
108 mu(result.x[N:], result.x[:N])
109])
110 standard_bias, _ = compute_bias_cov(result, zero_residual_data)
111
112 table[i][’estimate’] = result.x[:N]
113 table[i][’bias’] = bias[:N]
114 table[i][’standard_bias’] = standard_bias[:N]
115 table[i][’cov’] = cov[:N, :N]
116 table[i][’data_y’] = data_y
117 table[i][’data_x’] = data_x
118 table[i][’complete_estimate’] = result.x
119 table[i][’complete_bias’] = bias
120 table[i][’complete_cov’] = cov
121 table[i][’standard_cov’] = least_squares_cov(result)[:N, :N]
122 table[i][’success’] = result.success
123
124 table.flush()
125
126 del table

1 # file fit−plot.py
2 # you can run this script while fit.py is running to see the partial results
3
4 from matplotlib import pyplot as plt
5 import uncertainties
6 import numpy as np
7
8 SIGMA_FACTOR = 5
9
10 table = np.load(’fit.npy’, mmap_mode=’r’)
11 table = table[table[’success’]]
12 N = len(table[0][’estimate’])
13
14 info = np.load(’fit−info.npz’)
15 true_par = info[’true_par’]
16
17 fig = plt.figure(’fit’)
18 fig.clf()
19 axs = fig.subplots(N + 1, N)
20

13

21 def ms(s):
22 return uncertainties.ufloat(np.mean(s), np.std(s) / np.sqrt(len(s)))
23
24 estimates = table[’estimate’].T
25 biases = table[’bias’].T
26 sbias = table[’standard_bias’].T
27 covs = table[’cov’].T
28 scovs = table[’standard_cov’].T
29 sigmas = np.sqrt(np.einsum(’iim−>im’, covs))
30 ssigmas = np.sqrt(np.einsum(’iim−>im’, scovs))
31
32 ok = np.einsum(
33 ’ua,uab,ub−>u’,
34 table[’bias’], np.linalg.inv(table[’standard_cov’]), table[’bias’]
35) < SIGMA_FACTOR ∗∗ 2
36
37 for i in range(N):
38 ax = axs[i][i]
39
40 noncorr = estimates[i]
41 corr = estimates[i] − np.where(ok, biases[i], 0)
42 stdcorr = estimates[i] − sbias[i]
43 ax.hist(
44 noncorr, bins=’auto’, histtype=’stepfilled’,
45 label=’least␣squares...\n(bias␣=␣{},\nstd␣=␣{:.2g})’.format(
46 ms(noncorr − true_par[i]),
47 np.std(noncorr)
48),
49 color=’lightgray’, zorder=0, density=True
50)
51 ax.hist(
52 corr, bins=’auto’, histtype=’step’,
53 label=’...with␣correction␣(12)\n(bias␣=␣{},\nstd␣=␣{:.2g})’.format(
54 ms(corr − true_par[i]),
55 np.std(corr)
56),
57 color=’black’, zorder=2, density=True
58)
59 ax.hist(
60 stdcorr, bins=’auto’, histtype=’step’,
61 label=’...with␣correction␣(34)\n(bias␣=␣{},\nstd␣=␣{:.2g})’.format(
62 ms(stdcorr − true_par[i]),
63 np.std(stdcorr)

14

64),
65 linestyle=’−−’, color=’black’, zorder=2, density=True
66)
67 ax.plot(
68 2 ∗ [true_par[i]], ax.get_ylim(),
69 scaley=False, label=’true␣value’, color=’darkgray’, linewidth=3,
70 zorder=0.5
71)
72 ax.legend(loc=’best’, fontsize=’small’)
73 ax.set_title(f’Parameter␣{i}␣estimator’)
74 ax.set_xlabel(f’parameter␣{i}’)
75 ax.set_ylabel(’normalized␣counts’)
76
77 # now we plot histogram of estimated standard deviation
78 ax = axs[N][i]
79
80 sstd = np.std(corr)
81 sstdnc = np.std(noncorr)
82
83 ax.hist(
84 ssigmas[i],
85 bins=’auto’, histtype=’stepfilled’, density=True,
86 color=’lightgray’, zorder=0,
87 label=’eq.␣27’
88)
89 ax.hist(
90 np.where(ok, sigmas[i], ssigmas[i]),
91 bins=’auto’, histtype=’step’, density=True,
92 color=’black’, linestyle=’−’, zorder=1,
93 label=’eq.␣33\n(or␣eq.␣27␣when␣correction␣too␣large)’
94)
95 ax.plot(
96 2 ∗ [sstdnc], ax.get_ylim(),
97 scaley=False, color=’darkgray’, linewidth=3, zorder=0.5,
98 label=f’sample␣sdev␣of␣noncorrected␣({sstdnc:.2g})’
99)
100 ax.plot(
101 2 ∗ [sstd], ax.get_ylim(),
102 scaley=False, color=’black’, zorder=1.5, linestyle=’−’,
103 label=f’sample␣sdev␣w.␣correction␣(12)␣({sstd:.2g})’
104)
105 ax.legend(loc=’best’, fontsize=’small’)
106 ax.set_title(f’Standard␣deviation␣of␣parameter␣{i}␣est.’)

15

107 ax.set_xlabel(f’sdev␣of␣parameter␣{i}’)
108 ax.set_ylabel(’normalized␣counts’)
109
110 for i in range(N):
111 for j in range(i + 1, N):
112 ax = axs[i][j]
113
114 ax.plot(
115 true_par[j], true_par[i],
116 marker=’+’, linestyle=’’, color=’red’, markersize=8,
117 zorder=5, label=’true␣value’
118)
119 ax.plot(
120 estimates[j], estimates[i],
121 marker=’.’, markersize=6, color=’lightgray’,
122 linestyle=’’, label=’least␣squares’
123)
124 ax.plot(
125 (estimates[j] − biases[j])[ok], (estimates[i] − biases[i])[ok],
126 marker=’.’, markersize=2, color=’black’,
127 linestyle=’’, label=’correction␣(12)’
128)
129 ax.plot(
130 (estimates[j] − biases[j])[~ok], (estimates[i] − biases[i])[~ok],
131 marker=’x’, markersize=6, color=’black’,
132 linestyle=’’, label=’correction␣detected␣too␣large’
133)
134 ax.legend(loc=’best’, fontsize=’small’)
135 ax.set_title(f’Parameters␣$(0,␣1)$’)
136 ax.set_xlabel(f’parameter␣{j}’)
137 ax.set_ylabel(f’parameter␣{i}’)
138
139 for i in range(N):
140 for j in range(i):
141 ax = axs[i][j]
142
143 k = j ∗ N + i
144 ax.errorbar(
145 info[’true_x’], info[’true_y’],
146 xerr=1, yerr=1,
147 linestyle=’’, marker=’’, color=’gray’,
148 label=’true␣points’
149)

16

150 ax.plot(
151 table[k][’data_x’], table[k][’data_y’],
152 linestyle=’’, marker=’.’, color=’black’, label=’simulated␣data’
153)
154 ax.legend(loc=’best’, fontsize=’small’)
155 ax.set_title(’Example␣dataset’)
156 ax.set_xlabel(’t’)
157 ax.set_ylabel(’x’)
158
159 fig.tight_layout()
160 fig.show()

17

	Introduction
	Generic Second Order Bias Correction
	Bias Correction of the Least Squares Estimator
	Example
	Conclusion
	Computer program

