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A concrete problem: 
fitting parton distribution 
functions
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• Functions 


• Used in particle Physics to characterize protons


• Sort of a velocity distribution of quarks inside the proton


• Must be obtained from indirect data


• No parametric form


(Thanks to Alessandro Candido from the NNPDF group in Milan for 
this example)

f : (0,1) → ℝ

Parton distribution functions (PDFs)
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• Eight unknown functions: 


• Constraint #1: 


• Constraint #2: 


• Data #1 (linear link): 


• Data #2 (quadratic link): 

f1, f2, f3, f4, f5, f6, f7, f8 : (0,1) → ℝ
8

∑
i=1

∫
1

0
fi(x) dx = 1

8

∑
i=1

∫
1

0
x ⋅ fi(x) dx = 1

y(1) =
8

∑
i=1

M(1)
i fi(x(1)

i ) + ϵ(1)

y(2) =
8

∑
i=1

fi(x(2)
i )⊤M(2)

i fi(x(2)
i ) + ϵ(2)

(simplified version)
The fitting task
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• Good uncertainty quantification required


• Currently solved with a Monte Carlo of neural networks—
computationally burdensome, hinders progress


• How to impose the integral constraints efficiently?


• How to keep into account all the correlations without sampling?


• How to regularize i.e. avoid functions which make no sense?

Problems
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• Adopt Bayesian inference (easier uncertainty quantification)


•  Must define an a priori probability distribution on the space 
of functions on 


• Then we obtain an a posteriori distribution with Bayes' theorem 
plugging data and constraints


•  is a real vector space, so we can use a 
multivariate Normal as prior


• Infinite dimensional multivariate Normals are Gaussian 
processes

⇒
(0,1)

{f : (0,1) → ℝ}

(on paper)
Solution
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• I won't actually show you the 
solution (I don't have the 
data)


• Just remember this is the 
kind of problem that the 
program is designed to make 
easy
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Gaussian processes

9



• A (zero-mean) Normal distribution is characterized by its 
covariance matrix   

• 


• 


• In an infinite-dimensional space, this is called covariance 
function or kernel:


•

V

p(y) ∝ exp (−
1
2

y⊤V−1y)
Vij = Cov[yi, yj]

k(x, x′ ) ≡ Cov[ f(x), f(x′ )]

Definition
Gaussian process
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• Normality is preserved under marginalization


• i.e., looking only at a certain subvector, it's still a Normal 
distribution


• The covariance matrix is the corresponding submatrix


•  even if the space is infinite-dimensional, we need to compute 
the kernel only on the finite set of points we actually use


• Normality is preserved by linear transformations


•

⇒

Cov[Ay] = AVA⊤

Properties
Gaussian process
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• Inference means we observe some values of the function, and 
we want the probability distribution of other unseen values.


• We have 


• We want 


• Thus we want the conditional probability 


• Normality is preserved by conditioning


• So  is still Normal

y ≡ f(x)

y* ≡ f(x*)

p(y* |y)

p(y* |y)

Inference (1/2)
Gaussian process
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•  is Normal  we compute its mean and covariance matrix


• Consider the covariance matrix of the joint vector  in block 
form


• 


• Mean: 


• Covariance:  (Schur 
complement of )

p(y* |y) ⇒

(y, y*)

( Cov[y] Cov[y, y*]
Cov[y*, y] Cov[y*] ) = (

Vyy Vyy*

V⊤
yy* Vy*y*)

E[y* |y] = Vy*yV−1
yy y

Cov[y* |y] = Vy*y* − V⊤
yy*V

−1
yy Vyy*

Vyy

Inference (2/2)
Gaussian process
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Gaussian process
Result
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• As highlighted, we have to invert the covariance matrix: 


• Let  be the length of , i.e., number of data points


• Computing  is  (evaluate  on all pairs)


• Inverting (decomposing)  is 


•  is the bottleneck, #datapoints must be < 1000-5000

V−1
yy

n y

Vyy O(n2) k(x, x′ )

Vyy O(n3)

O(n3)

Computational aspects
Gaussian process
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• Structure of a Gaussian process program:


• Input: the kernel function 


• Input: the points , 


• Input: the data 


• Step 1: build the covariance matrix of 


• Step 2: decompose the covariance matrix


• Output:  and  

k(x, x′ )

x x*

y

(y, y*)

E[y* |y] Cov[y* |y]

Algorithm
Gaussian process
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• In the example we had:


• 8 functions 


• sum/integral constraints 


• function  data mappings , 


• How do you specify ,  and  in this case?

f1, …, f8
8

∑
i=1

∫ … = 1

→ M(1) M(2)

k(x, x′ ) x x*

User interface (1/3)
Gaussian process
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• Eight functions is equivalent to one function with an additional 
input: 


• Integrals are linear transformations in the space of functions, 
so still part of the Gaussian process


• Finite linear transformation as well like 


•  is nonlinear, can be done but won't explain now

fi(x) ≡ f(x, i)

M(1)

M(2)

User interface (2/3)
Gaussian process
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• The user wants to talk in terms of individual functions, integrals, 
transformations...


• ...The program behind the scenes must build this:


• Where the terms are                                          ,                                           
                                                                                      , etc.

User interface (3/3)
Gaussian process
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The program
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• A Python module (relies on functionalities too advanced for R)


• The core functionality is complete


• Install: $ pip install lsqfitgp 

• Manual: https://lsqfitgp.readthedocs.io


• Released as open source


• The idea for the interface is taken from lsqfit, a program by 
G. P. Lepage, a theoretical Physicist at Cornell

lsqfitgp
The program
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https://lsqfitgp.readthedocs.io


Done:


• Finite transformations


• Derivatives/integrals


• Nonlinear finite transformations


• Interface


To do:


• Other infinite transformations (Fourier, Taylor)


• Fast decomposition of Vyy

Features
The program
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Example 1
Constraint: local maximum in 0

23

import lsqfitgp as lgp 
import numpy as np 
import gvar 

gp = lgp.GP(lgp.ExpQuad()) 

gp.addx([-2, -1, 1, 2], 'data') 
gp.addx(0, 'first', deriv=1) 
gp.addx(0, 'second', deriv=2)  

xplot = np.linspace(-2, 2, 100) 
gp.addx(xplot, 'plot') 

yplot = gp.predfromdata({ 
    'data'  : [0, 0, 0, 0], 
    'first' : 0, 
    'second': gvar.gvar(-1, 0.3) # -1 +/- 0.3 
}, 'plot')

yplot = array([-3(60)e-17, -0.007(17), -0.015(33), ...])



import pymc3 as pm
import numpy as np
import theano.tensor as tt
from matplotlib import pyplot as plt

Xysigma = np.array([
    # x, deriv,  y, sigma
    [-2,     0,  0,   0  ],
    [-1,     0,  0,   0  ],
    [ 1,     0,  0,   0  ],
    [ 2,     0,  0,   0  ],
    [ 0,     1,  0,   0  ],
    [ 0,     2, -1,   0.3],
])

X = Xysigma[:, :2]
y = Xysigma[:, 2]
sigma = Xysigma[:, 3]

Xplot = np.stack([
    np.linspace(-2, 2, 100),
    np.zeros(100),
], axis=1)

# Probabilist's Hermite polynomials
def H1(x):
    return x
def H2(x):
    return (x - 1) * (x + 1)
def H3(x):
    return x * (x - tt.sqrt(3)) * (x + tt.sqrt(3))
def H4(x):
    return (x ** 2 - 6) * x ** 2 + 3

def expquad00(x, xs):
    return tt.exp(-1/2 * (x - xs) ** 2)
def expquad01(x, xs):
    return H1(x - xs) * expquad00(x, xs)
def expquad02(x, xs):
    return H2(x - xs) * expquad00(x, xs)
def expquad11(x, xs):
    return -H2(x - xs) * expquad00(x, xs)
def expquad12(x, xs):
    return -H3(x - xs) * expquad00(x, xs)
def expquad22(x, xs):
    return H4(x - xs) * expquad00(x, xs)

class MyKernel(pm.gp.cov.Covariance):
    
    def __init__(self):
        super(MyKernel, self).__init__(2)
    
    def diag(self, X):
        return tt.choose(
            X[:, 1].astype(int),
            [
                expquad00(X[:, 0], X[:, 0]),
                expquad11(X[:, 0], X[:, 0]),
                expquad22(X[:, 0], X[:, 0]),
            ]
        )
    
    def full(self, X, Xs=None):
        if Xs is None:
            Xs = X
        return tt.choose(
            (3 * X[:, None, 1] + Xs[None, :, 1]).astype(int),
            [
                expquad00(X [:, None, 0], Xs[None, :, 0]),
                expquad01(X [:, None, 0], Xs[None, :, 0]),
                expquad02(X [:, None, 0], Xs[None, :, 0]),
                expquad01(Xs[None, :, 0], X [:, None, 0]),
                expquad11(X [:, None, 0], Xs[None, :, 0]),
                expquad12(X [:, None, 0], Xs[None, :, 0]),
                expquad02(Xs[None, :, 0], X [:, None, 0]),
                expquad12(Xs[None, :, 0], X [:, None, 0]),
                expquad22(X [:, None, 0], Xs[None, :, 0]),
            ]
        )

with pm.Model() as model:
    cov_func = MyKernel()
    gp = pm.gp.Marginal(cov_func=cov_func)
    y_data = gp.marginal_likelihood('y_data', X=X, y=y, noise=sigma)

mu, var = gp.predict(Xplot, point=[], diag=True)
sdev = np.sqrt(var)

fig, ax = plt.subplots(num='example1-pymc3', clear=True)
ax.fill_between(Xplot[:, 0], mu - sdev, mu + sdev)
ax.plot(Xplot[:, 0], mu, '-k')
ax.plot(X[:4, 0], y[:4], 'ok')
fig.tight_layout()
fig.show()

lsqfitgp vs. pymc3
Example 1
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import lsqfitgp as lgp 
import numpy as np 
import gvar 

gp = lgp.GP(lgp.ExpQuad()) 

gp.addx([-2, -1, 1, 2], 'data') 
gp.addx(0, 'first', deriv=1) 
gp.addx(0, 'second', deriv=2)  

xplot = np.linspace(-2, 2, 100) 
gp.addx(xplot, 'plot') 

yplot = gp.predfromdata({ 
    'data'  : [0, 0, 0, 0], 
    'first' : 0, 
    'second': gvar.gvar(-1, 0.3) # -1 +/- 0.3 
}, 'plot')



Example 2
Constrained area
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function = lambda x: 1/np.pi * 1/(1 + x**2) 

x = np.array([-5, -4, -3, -2, 2, 3, 4, 5]) 
y = function(x) 

gp = lgp.GP(lgp.ExpQuad(scale=2)) 

gp.addx(x, 'datapoints', deriv=1) 
gp.addx(-5, 'left') 
gp.addx(5, 'right') 
gp.addtransf({'left': -1, 'right': 1}, 'area') 

xplot = np.linspace(-5, 5, 200) 
gp.addx(xplot, 'plot', deriv=1) 

yplot = gp.predfromdata({ 
    'datapoints': y, 
    'area'      : 0.87, 
}, 'plot')



Multioutput
Example 3
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k = lgp.Wiener(dim='time') * lgp.White(dim='coord') 
gp = lgp.GP(k) 

x = np.empty((2, 300), dtype=[ 
    ('time' , float), 
    ('coord', int  ), 
]) 
x['time'] = np.linspace(0, 0.1, 300)[None, :] 
x['coord'] = np.arange(2)[:, None] 
gp.addx(x, 'walk') 

end = np.empty(2, dtype=x.dtype) 
end['time'] = np.max(x['time']) 
end['coord'] = np.arange(2) 
gp.addx(end, 'endpoint') 

path = gp.predfromdata({'endpoint': [1, 1]}, 'walk') 

x, y = next(gvar.raninter(path))



Numerical linear algebra 
TODOs
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• V is positive semi-definite


• V is often very degenerate (numerically)


• Quite robust general solution: diagonalize V, "pump" or "cut" low 
eigenvalues— 


• Faster: estimate max eigenvalue with Gershgorin, add epsilon to 
the diagonal, do Cholesky— 


•  but slow: low-rank approximation with iterative method


• These things are implemented

O(n3)

O(n3)

O(n2)

(inefficiently)
Decomposing the V matrix
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• Two main routes: approximate algorithms, exact algorithms that work 
only for special matrices


• Approximate:

• Assume a sparsity structure for the inverse with a DAG

• Hierarchical (not very successful)


• Exact:


• V is Toeplitz: 

• Sparse V

• V is a Kronecker product

• V is semiseparable: 


•  is exactly sparse (Markov process)


These things are missing but I mostly know how to do them

O(n log2 n)

O(n)
V−1

(efficiently)
Decomposing the V matrix
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• Often the V matrix has a natural block form suggested by the 
problem:


• What can we do if V_11 is, say, Toeplitz, but the rest is not?


•  Blockwise Gaussian elimination (M = Schur complement of A)⇒

One block at a time (1/3)
Decomposing the V matrix
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• First decompose V_11 with fast algorithm, then do the rest


• Other use case: cache decomposition to add rows later 
(Bayesian optimization: inference->new data->inference->new 
data...)

One block at a time (2/3)
Decomposing the V matrix
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One block at a time (3/3)
Decomposing the V matrix
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The strategy should be decided automatically by the program

Is V_11 Toeplitz?

Is V_22 small?
Is V_33 in cache?

Is V_23 zero?

Should I block 
together 2 and 3?}Decompose first 

V_11 or V_22?



Thanks for the attention
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Try it:


$ pip install lsqfitgp


