
A NEW PROGRAMMING
INTERFACE FOR GAUSSIAN
PROCESS REGRESSION
Giacomo Petrillo, University of Florence
Department of Statistics, Computer Science and Applications (DiSIA)
April 8, 2022

• A concrete problem: fitting parton distribution functions

• Gaussian processes

• The program

• Numerical linear algebra TODOs

Contents

2

A concrete problem:
fitting parton distribution
functions

3

• Functions

• Used in particle Physics to characterize protons

• Sort of a velocity distribution of quarks inside the proton

• Must be obtained from indirect data

• No parametric form

(Thanks to Alessandro Candido from the NNPDF group in Milan for
this example)

f : (0,1) → ℝ

Parton distribution functions (PDFs)

4

• Eight unknown functions:

• Constraint #1:

• Constraint #2:

• Data #1 (linear link):

• Data #2 (quadratic link):

f1, f2, f3, f4, f5, f6, f7, f8 : (0,1) → ℝ
8

∑
i=1

∫
1

0
fi(x) dx = 1

8

∑
i=1

∫
1

0
x ⋅ fi(x) dx = 1

y(1) =
8

∑
i=1

M(1)
i fi(x(1)

i) + ϵ(1)

y(2) =
8

∑
i=1

fi(x(2)
i)⊤M(2)

i fi(x(2)
i) + ϵ(2)

(simplified version)
The fitting task

5

• Good uncertainty quantification required

• Currently solved with a Monte Carlo of neural networks—
computationally burdensome, hinders progress

• How to impose the integral constraints efficiently?

• How to keep into account all the correlations without sampling?

• How to regularize i.e. avoid functions which make no sense?

Problems

6

• Adopt Bayesian inference (easier uncertainty quantification)

• Must define an a priori probability distribution on the space
of functions on

• Then we obtain an a posteriori distribution with Bayes' theorem
plugging data and constraints

• is a real vector space, so we can use a
multivariate Normal as prior

• Infinite dimensional multivariate Normals are Gaussian
processes

⇒
(0,1)

{f : (0,1) → ℝ}

(on paper)
Solution

7

• I won't actually show you the
solution (I don't have the
data)

• Just remember this is the
kind of problem that the
program is designed to make
easy

8

Gaussian processes

9

• A (zero-mean) Normal distribution is characterized by its
covariance matrix

•

•

• In an infinite-dimensional space, this is called covariance
function or kernel:

•

V

p(y) ∝ exp (−
1
2

y⊤V−1y)
Vij = Cov[yi, yj]

k(x, x′) ≡ Cov[f(x), f(x′)]

Definition
Gaussian process

10

• Normality is preserved under marginalization

• i.e., looking only at a certain subvector, it's still a Normal
distribution

• The covariance matrix is the corresponding submatrix

• even if the space is infinite-dimensional, we need to compute
the kernel only on the finite set of points we actually use

• Normality is preserved by linear transformations

•

⇒

Cov[Ay] = AVA⊤

Properties
Gaussian process

11

• Inference means we observe some values of the function, and
we want the probability distribution of other unseen values.

• We have

• We want

• Thus we want the conditional probability

• Normality is preserved by conditioning

• So is still Normal

y ≡ f(x)

y* ≡ f(x*)

p(y* |y)

p(y* |y)

Inference (1/2)
Gaussian process

12

• is Normal we compute its mean and covariance matrix

• Consider the covariance matrix of the joint vector in block
form

•

• Mean:

• Covariance: (Schur
complement of)

p(y* |y) ⇒

(y, y*)

(Cov[y] Cov[y, y*]
Cov[y*, y] Cov[y*]) = (

Vyy Vyy*

V⊤
yy* Vy*y*)

E[y* |y] = Vy*yV−1
yy y

Cov[y* |y] = Vy*y* − V⊤
yy*V

−1
yy Vyy*

Vyy

Inference (2/2)
Gaussian process

13

Gaussian process
Result

14

• As highlighted, we have to invert the covariance matrix:

• Let be the length of , i.e., number of data points

• Computing is (evaluate on all pairs)

• Inverting (decomposing) is

• is the bottleneck, #datapoints must be < 1000-5000

V−1
yy

n y

Vyy O(n2) k(x, x′)

Vyy O(n3)

O(n3)

Computational aspects
Gaussian process

15

• Structure of a Gaussian process program:

• Input: the kernel function

• Input: the points ,

• Input: the data

• Step 1: build the covariance matrix of

• Step 2: decompose the covariance matrix

• Output: and

k(x, x′)

x x*

y

(y, y*)

E[y* |y] Cov[y* |y]

Algorithm
Gaussian process

16

• In the example we had:

• 8 functions

• sum/integral constraints

• function data mappings ,

• How do you specify , and in this case?

f1, …, f8
8

∑
i=1

∫ … = 1

→ M(1) M(2)

k(x, x′) x x*

User interface (1/3)
Gaussian process

17

• Eight functions is equivalent to one function with an additional
input:

• Integrals are linear transformations in the space of functions,
so still part of the Gaussian process

• Finite linear transformation as well like

• is nonlinear, can be done but won't explain now

fi(x) ≡ f(x, i)

M(1)

M(2)

User interface (2/3)
Gaussian process

18

• The user wants to talk in terms of individual functions, integrals,
transformations...

• ...The program behind the scenes must build this:

• Where the terms are ,
 , etc.

User interface (3/3)
Gaussian process

19

The program

20

• A Python module (relies on functionalities too advanced for R)

• The core functionality is complete

• Install: $ pip install lsqfitgp

• Manual: https://lsqfitgp.readthedocs.io

• Released as open source

• The idea for the interface is taken from lsqfit, a program by
G. P. Lepage, a theoretical Physicist at Cornell

lsqfitgp
The program

21

https://lsqfitgp.readthedocs.io

Done:

• Finite transformations

• Derivatives/integrals

• Nonlinear finite transformations

• Interface

To do:

• Other infinite transformations (Fourier, Taylor)

• Fast decomposition of Vyy

Features
The program

22

Example 1
Constraint: local maximum in 0

23

import lsqfitgp as lgp
import numpy as np
import gvar

gp = lgp.GP(lgp.ExpQuad())

gp.addx([-2, -1, 1, 2], 'data')
gp.addx(0, 'first', deriv=1)
gp.addx(0, 'second', deriv=2)

xplot = np.linspace(-2, 2, 100)
gp.addx(xplot, 'plot')

yplot = gp.predfromdata({
 'data' : [0, 0, 0, 0],
 'first' : 0,
 'second': gvar.gvar(-1, 0.3) # -1 +/- 0.3
}, 'plot')

yplot = array([-3(60)e-17, -0.007(17), -0.015(33), ...])

import pymc3 as pm
import numpy as np
import theano.tensor as tt
from matplotlib import pyplot as plt

Xysigma = np.array([
 # x, deriv, y, sigma
 [-2, 0, 0, 0],
 [-1, 0, 0, 0],
 [1, 0, 0, 0],
 [2, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 2, -1, 0.3],
])

X = Xysigma[:, :2]
y = Xysigma[:, 2]
sigma = Xysigma[:, 3]

Xplot = np.stack([
 np.linspace(-2, 2, 100),
 np.zeros(100),
], axis=1)

Probabilist's Hermite polynomials
def H1(x):
 return x
def H2(x):
 return (x - 1) * (x + 1)
def H3(x):
 return x * (x - tt.sqrt(3)) * (x + tt.sqrt(3))
def H4(x):
 return (x ** 2 - 6) * x ** 2 + 3

def expquad00(x, xs):
 return tt.exp(-1/2 * (x - xs) ** 2)
def expquad01(x, xs):
 return H1(x - xs) * expquad00(x, xs)
def expquad02(x, xs):
 return H2(x - xs) * expquad00(x, xs)
def expquad11(x, xs):
 return -H2(x - xs) * expquad00(x, xs)
def expquad12(x, xs):
 return -H3(x - xs) * expquad00(x, xs)
def expquad22(x, xs):
 return H4(x - xs) * expquad00(x, xs)

class MyKernel(pm.gp.cov.Covariance):

 def __init__(self):
 super(MyKernel, self).__init__(2)

 def diag(self, X):
 return tt.choose(
 X[:, 1].astype(int),
 [
 expquad00(X[:, 0], X[:, 0]),
 expquad11(X[:, 0], X[:, 0]),
 expquad22(X[:, 0], X[:, 0]),
]
)

 def full(self, X, Xs=None):
 if Xs is None:
 Xs = X
 return tt.choose(
 (3 * X[:, None, 1] + Xs[None, :, 1]).astype(int),
 [
 expquad00(X [:, None, 0], Xs[None, :, 0]),
 expquad01(X [:, None, 0], Xs[None, :, 0]),
 expquad02(X [:, None, 0], Xs[None, :, 0]),
 expquad01(Xs[None, :, 0], X [:, None, 0]),
 expquad11(X [:, None, 0], Xs[None, :, 0]),
 expquad12(X [:, None, 0], Xs[None, :, 0]),
 expquad02(Xs[None, :, 0], X [:, None, 0]),
 expquad12(Xs[None, :, 0], X [:, None, 0]),
 expquad22(X [:, None, 0], Xs[None, :, 0]),
]
)

with pm.Model() as model:
 cov_func = MyKernel()
 gp = pm.gp.Marginal(cov_func=cov_func)
 y_data = gp.marginal_likelihood('y_data', X=X, y=y, noise=sigma)

mu, var = gp.predict(Xplot, point=[], diag=True)
sdev = np.sqrt(var)

fig, ax = plt.subplots(num='example1-pymc3', clear=True)
ax.fill_between(Xplot[:, 0], mu - sdev, mu + sdev)
ax.plot(Xplot[:, 0], mu, '-k')
ax.plot(X[:4, 0], y[:4], 'ok')
fig.tight_layout()
fig.show()

lsqfitgp vs. pymc3
Example 1

24

import lsqfitgp as lgp
import numpy as np
import gvar

gp = lgp.GP(lgp.ExpQuad())

gp.addx([-2, -1, 1, 2], 'data')
gp.addx(0, 'first', deriv=1)
gp.addx(0, 'second', deriv=2)

xplot = np.linspace(-2, 2, 100)
gp.addx(xplot, 'plot')

yplot = gp.predfromdata({
 'data' : [0, 0, 0, 0],
 'first' : 0,
 'second': gvar.gvar(-1, 0.3) # -1 +/- 0.3
}, 'plot')

Example 2
Constrained area

25

function = lambda x: 1/np.pi * 1/(1 + x**2)

x = np.array([-5, -4, -3, -2, 2, 3, 4, 5])
y = function(x)

gp = lgp.GP(lgp.ExpQuad(scale=2))

gp.addx(x, 'datapoints', deriv=1)
gp.addx(-5, 'left')
gp.addx(5, 'right')
gp.addtransf({'left': -1, 'right': 1}, 'area')

xplot = np.linspace(-5, 5, 200)
gp.addx(xplot, 'plot', deriv=1)

yplot = gp.predfromdata({
 'datapoints': y,
 'area' : 0.87,
}, 'plot')

Multioutput
Example 3

26

k = lgp.Wiener(dim='time') * lgp.White(dim='coord')
gp = lgp.GP(k)

x = np.empty((2, 300), dtype=[
 ('time' , float),
 ('coord', int),
])
x['time'] = np.linspace(0, 0.1, 300)[None, :]
x['coord'] = np.arange(2)[:, None]
gp.addx(x, 'walk')

end = np.empty(2, dtype=x.dtype)
end['time'] = np.max(x['time'])
end['coord'] = np.arange(2)
gp.addx(end, 'endpoint')

path = gp.predfromdata({'endpoint': [1, 1]}, 'walk')

x, y = next(gvar.raninter(path))

Numerical linear algebra
TODOs

27

• V is positive semi-definite

• V is often very degenerate (numerically)

• Quite robust general solution: diagonalize V, "pump" or "cut" low
eigenvalues—

• Faster: estimate max eigenvalue with Gershgorin, add epsilon to
the diagonal, do Cholesky—

• but slow: low-rank approximation with iterative method

• These things are implemented

O(n3)

O(n3)

O(n2)

(inefficiently)
Decomposing the V matrix

28

• Two main routes: approximate algorithms, exact algorithms that work
only for special matrices

• Approximate:

• Assume a sparsity structure for the inverse with a DAG

• Hierarchical (not very successful)

• Exact:

• V is Toeplitz:

• Sparse V

• V is a Kronecker product

• V is semiseparable:

• is exactly sparse (Markov process)

These things are missing but I mostly know how to do them

O(n log2 n)

O(n)
V−1

(efficiently)
Decomposing the V matrix

29

• Often the V matrix has a natural block form suggested by the
problem:

• What can we do if V_11 is, say, Toeplitz, but the rest is not?

• Blockwise Gaussian elimination (M = Schur complement of A)⇒

One block at a time (1/3)
Decomposing the V matrix

30

• First decompose V_11 with fast algorithm, then do the rest

• Other use case: cache decomposition to add rows later
(Bayesian optimization: inference->new data->inference->new
data...)

One block at a time (2/3)
Decomposing the V matrix

31

One block at a time (3/3)
Decomposing the V matrix

32

The strategy should be decided automatically by the program

Is V_11 Toeplitz?

Is V_22 small?
Is V_33 in cache?

Is V_23 zero?

Should I block
together 2 and 3?}Decompose first

V_11 or V_22?

Thanks for the attention

33

Try it:

$ pip install lsqfitgp

