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Gaussian process regression
• Another Bayesian nonparametric method


• Gaussian process = Multivariate Normal in  dimensions


• Finite marginals are Normal


•  Analytical calculations


•
A priori 

∞

⟹

f(x1)
⋮

f(xn)
∼ 𝒩

m(x1)
⋮

m(xn)
,

k(x1, x1) ⋯ k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn)
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GP—Inference
• We know 


• We want 


•

( f(x1), …, f(xn)) = y

f(x*1 ), …, f(x*m)

f(x1)
⋮

f(xn)
f(x*1 )

⋮
f(x*m)

∼ 𝒩

m(x1)
⋮

m(xn)
m(x*1 )

⋮
m(x*m)

,

k(x1, x1) ⋯ k(x1, xn) k(x1, x*1 ) ⋯ k(x1, x*m)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn) k(xn, x*1 ) ⋯ k(xn, x*m)
k(x*1 , x1) ⋯ k(x*1 , xn) k(x*1 , x*1 ) ⋯ k(x*1 , x*m)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
k(x*m, x1) ⋯ k(x*m, xn) k(x*m, x*1 ) ⋯ k(x*m, x*m)
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GP—Inference
• Abbreviate   ,   


• Abbreviate 


•

f = ( f(x1), …, f(xn)) f* = ( f(x*1 ), …, f(x*m))

( f
f*) ∼ 𝒩 (( m

m*), ( Σxx Σxx*
Σx*x Σx*x*))

(f* ∣ f = y) ∼ 𝒩(m* + Σx*xΣ+
xx(y − m), Σx*x* − Σx*xΣ+

xxΣxx*)
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BART ≠ GP
• “Given its underlying tree structure, intuitively BART may not have the 

flexibility to capture the additional uncertainty in regions of poor overlap, 
whereas some other “smoother” Bayesian nonparametric models such as 
the Gaussian Process may fare better.” (Hahn et al. 2020)
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BART ≠ GP
• “Given its underlying tree structure, intuitively BART may not have the 

flexibility to capture the additional uncertainty in regions of poor overlap, 
whereas some other “smoother” Bayesian nonparametric models such as the 
Gaussian Process may fare better.” (Hahn et al. 2020)


• “Similarly, while Gaussian processes may induce smoothness in the 
regression, it could be argued BART-based models are easier to implement 
in practice and work well off-the-shelf with minimal tuning.” (Hahn et al. 2020)


• “Note how the GP-estimated expected outcomes tick up or down outside the 
range of the data based on a handful of observations at the extremes, as 
opposed to BART and the linear model which extrapolate in predictable 
ways.” (Hahn et al. 2020)
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BART ≠ GP
• “Finally, several of the discussants proposed Gaussian process models 

with limited discussion of the covariance function and how its 
parameters are set or inferred. The covariance function is often pivotal 
to their success. Unsurprisingly, the squared exponential covariance 
function performs splendidly on very smooth response surfaces, but what 
happens when this strong assumption is violated? By contrast, BART 
has a long track record of adapting successfully to a wide variety of 
unknown covariance structures and this robustness is why we chose 
to design BCF around BART priors.” (Hahn et. al 2020)
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BART ≠ GP
• “Although not widely appreciated, BART actually is a Gaussian process, 

conditional on the trees (integrating over Gaussian priors over the leaf 
parameters). Specifically, the trees define a covariance function where the 
correlation between points x and x′ are a function of the proportion of 
trees in the forest in which the two points occupy the same leaf. As the 
number of trees is increased, this covariance function becomes 
increasingly smooth, although it is singular and nonstationary for a 
finite number of trees.” (Hahn et al. 2020)


• (N.B. there are technical errors here) Correction: J. Murray has clarified to 
me what he meant, and I now agree I was misunderstanding him.
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BART  GP⟶
• yi =

m

∑
j=1

g(xi; Tj, Mj) + εi
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BART  GP⟶
• 


•  are a priori i.i.d. 


• These are the hypotheses of the multivariate CLT


•
As : 

yi =
m

∑
j=1

g(xi; Tj, Mj) + εi

g(x; Tj, Mj)

m → ∞
g(x1)

⋮
g(xn)

∼ 𝒩
0
⋮
0

,
kBART(x1, x1) ⋯ kBART(x1, xn)

⋮ ⋱ ⋮
kBART(xn, x1) ⋯ kBART(xn, xn)
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What is kBART?
• Linero 2017:


• “[...] under some approximations [...] the associated kernel function [...] is [...]
.”


• This is a bog-standard GP covariance function


• But: “Furthermore, our experience is that the empirical performance of a 
minimally-tuned implementation of BART is frequently better than 
Gaussian process regression using the equivalent kernel [...] We 
conjecture that the reason for BART outperforming Gaussian process 
regression is that limiting the number of trees in the ensemble allows one to 
learn a data-adaptive notion of distance between points.”

k(x, x′ ) ∝ exp(−λ∥x − x′ ∥1)
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What is kBART?
• O'Reilly 2022 (h/t S. Deshpande):


• 


• I did not know about this when I did the calculation in 2022


• But I don't see how to use it to do the specific BART calculation

k(x, x′ ) ∝ exp(−λPsplit({hyperplanes separating the points})
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My kBART
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29

• 


•

k(x, x′ ) = P(x and x′  not separated)

= ∑
non-separating trees

P(tree)



My kBART
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• 


• 


• I write out the summation recursively for the BART prior

k(x, x′ ) = P(x and x′  not separated)

= ∑
non-separating trees

P(tree)



My kBART
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My kBART
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{x | E} =

(
E x > 0,

0 x = 0, even if E is not well defined,

Computable 
approximate 

formula (first stage)

This is exact for 
depth ≤ 2. Then I do 
some tricks to 
"repeat" it without 
actually doing the 
recursion.
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BART
exp(λ=0.7)
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 vs. kBART e−λ∥x−x′ ∥1/p

• Problem:


• 


•        if       


• Either it's not separable, or the intercept prior variance is large


• Speculative solution: , which is p.s.d. although 
not widely known

kBART(x, x′ ) ≈ 1 −
∥x − x′ ∥1

p

e−λ∥x−x′ ∥1/p ≈ 1 − λ |x1 − x′ 1 | − λ |x2 − x′ 2 | λ → 0

exp(−λ∥x − x′ ∥1/p) − e−λ
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exp(−λ∥x − x′ ∥1/p) − e−λ

• Proof of positivity:


• eλk =
∞

∑
n=0

(λk)n

n!
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exp(−λ∥x − x′ ∥1/p) − e−λ

• Proof of positivity:


•                 


• so  is a valid covariance function for any 

eλk =
∞

∑
n=0

(λk)n

n!
eλk − 1 =

∞

∑
n=1

(λk)n

n!

exp(λk(x, x′ )) − 1 k
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exp(−λ∥x − x′ ∥1/p) − e−λ

• Proof of positivity:


•                 


• so  is a valid covariance function for any 


• plug 

eλk =
∞

∑
n=0

(λk)n

n!
eλk − 1 =

∞

∑
n=1

(λk)n

n!

exp(λk(x, x′ )) − 1 k

k(x, x′ ) =
1
p

p

∑
i=1

(1 − |xi − x′ i | )
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exp(−λ∥x − x′ ∥1/p) − e−λ

• Proof of positivity:


•                 


• so  is a valid covariance function for any 


• plug    (triangular covariance function)

eλk =
∞

∑
n=0

(λk)n

n!
eλk − 1 =

∞

∑
n=1

(λk)n

n!

exp(λk(x, x′ )) − 1 k

k(x, x′ ) =
1
p

p

∑
i=1

(1 − |xi − x′ i | )
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BART MCMC vs. BART GP

47

At fixed hypers, MCMC > GP


At free hypers, GP > MCMC


Can't explore all hypers with MCMC 
because trees must be shallow, and 
needs CV

42 benchmark datasets 
from original BART paper

5x faster @ n = 6000
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Many possible further directions:


1. Could we bypass MCMC hyperparameter restrictions by combining 
BART with something simpler similar to deep trees?


2. I benchmarked BART packages on CRAN and picked the fastest; what 
about flexBART? (should be faster)


3. GP versions of BART variants (doable but tedious)


4. Trying GP techniques to scale to large datasets


5. Make up GP kernels similar to the BART kernel

Whither BART GP?
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I learned:


• What you can do with BART you can do with GP


• Covariance matrices are very sensitive


• Choice of kernel is very important with GPs, I have the impression there's 
too much defaulting


• (e.g. exponential quadratic , weird guy)e−∥x−x′ ∥2



Code

• My GP Python package: https://github.com/Gattocrucco/lsqfitgp


• Implements the BART kernel


• And ready to use functions for BART or BCF GP regression 
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https://github.com/Gattocrucco/lsqfitgp

