
Giacomo Petrillo giacomo.petrillo@unifi.it
Department of Statistics, Computer Science Applications (DISIA), University of Florence

At the BART reading group, SDS UT Austin
April 18, 2024

BART on GPU
up to 200x faster

1

mailto:giacomo.petrillo@unifi.it

Summary

• I implemented the original BART MCMC in JAX

• It's on PyPI: pip install bartz

• (JAX is a Python library for numerical computation)

• CPU: as fast as dbarts (SoTA), uses less memory

• GPU: up to 200x faster, but depends on number of trees and sample size

2

A100 = GPU you have at
TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the
time to construct all the trees

DGP is silly; bartz is
branchless so it does not
matter, but it may make a
difference for other software

200x
n = 16 000 000

Time for one full
MCMC step, at fixed
number of trees and
number of predictors,
w.r.t. sample size

3

35x

With and ntree

I reach lower
because I run out of
memory

p ∝ n

n
n = 130 000

A100 = GPU you have at
TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the
time to construct all the trees

DGP is silly; bartz is
branchless so it does not
matter, but it may make a
difference for other software4

With ntree , fixed ∝ n p

A100 = GPU you have at
TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the
time to construct all the trees

DGP is silly; bartz is
branchless so it does not
matter, but it may make a
difference for other software5

With , fixed ntreep ∝ n

A100 = GPU you have at
TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the
time to construct all the trees

DGP is silly; bartz is
branchless so it does not
matter, but it may make a
difference for other software6

Disclaimer

• Still not checked that the result is good at high or ntree

• Numerical accuracy problems in my implementation because I use 32 bit floats?

• (Probably not significant now, easy to fix anyway)

• Is BART a good model at high ?

• How many trees should I use? I believe

• I test routinely at low against the R package BART, it's correct there

n

n

∝ n

n

7

Tooling

How did I manage to make it faster?

1. I wouldn't touch R/C++ with a 10 feet pole

2. Indeed

3. Yes

4. Do I need to spell it out?

8

Is this enough?

• No, it is woefully inadequate!

• The problem I'd like to work on has binary predictors

• I can fit on each A100 GPU (20 GB design matrix slice)

p = 10 000 000

npart < 15 000

9

3x

Implementation details

10

Branchless

• Branchless = the algorithm always does the same sequence of operations,
irrespective of the inputs

• E.g., if a leaf has depth 2, I still traverse a fixed maximum number of levels to arrive
at it

• E.g., if I split a leaf in a tree, I recompute the datapoint partition for all other leaves

11

Why branchless?

• Parallelize automatically on GPU

• Even on CPU, it's good:

• Doesn't disrupt the pipeline

• (Pipeline = the CPU starts the next instruction before finishing the current one,
this is broken if the next instruction depends on the result of the previous)

• Vectorization

• Predictable memory access

• (Getting things from RAM is the slowest operation)

12

Tree representation

13

x1 < 7

x2 < 9 5.2

–1.9 0.5

5.2 –1.9 0.5

x1 x2

7 9

 0 1 2 3 4 5 6 7

I represent trees as heaps

Axis

Cutpoint

Value

 20 21 22

Left child = parent

Right child = parent

2 ×

2 × +1
Yes

Yes No

No

Tree traverse

• Big ntree matrix of indices

• index of leaf containing point in tree

• If max tree depth , requires one byte per element

• At , ntree , it's 1 GB

× n

Mti = i t

≤ 8

n = 100 000 = 10 000

(sorting datapoints into leaves)

14

3 3 3 3 2 3 3 3 3

3 3 2 3 3 2 3 3 3

2 3 2 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1

4 4 4 4 4 5 4 4 4

datapoint

tr
ee

Tree sampling step outline

• For all trees at once:

• Propose a grow or prune move (grow = make two new leaves, prune = remove two leaves)

• Where grow, update the leaf indices to represent the grow move

• Count the number of points per leaf

• Compute the posterior variance

• Sample centered leaf values

• Compute most of the Metropolis ratio terms

Parallel part

15

Tree sampling step outline

• One tree at a time:

• Sum the residuals in each leaf (SLOOOOOW)

• Subtract the old leaf values from the sum of residuals

• Finish MH ratio calculation

• Accept/reject move

• Add posterior mean to new leaves

• Add new leaves to residuals

Sequential part

16

Bottleneck

• Summing residuals

• I can't really parallelize it across trees

• It doesn't parallelize enough within a single tree if is not high (see slide 3)

• Makes the running time at smallish (see slide 4)

• This operation is called indexed reduce

• It's memory-bound: I do a simple operation on many elements, so the bottleneck
is fetching the elements, not the operation

• This means float16 does a 2x respect to float32, not 10x

n

O(ntree) n

Slowest part of the algorithm

17

Ideas to parallelize across trees?

18

Links

• https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Tesla

• https://github.com/Gattocrucco/bartz (has documentation)

• If you want to use this and need a feature, open an issue: https://github.com/
Gattocrucco/bartz/issues

• Example on Colab, if you don't have a local GPU: https://colab.research.google.com/
drive/1BHl_Nnh0VY-cUvCe5Topub4mgnOkGGO5?usp=sharing

19

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Tesla
https://github.com/Gattocrucco/bartz
https://github.com/Gattocrucco/bartz/issues
https://github.com/Gattocrucco/bartz/issues
https://github.com/Gattocrucco/bartz/issues
https://github.com/Gattocrucco/bartz/issues
https://colab.research.google.com/drive/1BHl_Nnh0VY-cUvCe5Topub4mgnOkGGO5?usp=sharing
https://colab.research.google.com/drive/1BHl_Nnh0VY-cUvCe5Topub4mgnOkGGO5?usp=sharing
https://colab.research.google.com/drive/1BHl_Nnh0VY-cUvCe5Topub4mgnOkGGO5?usp=sharing

