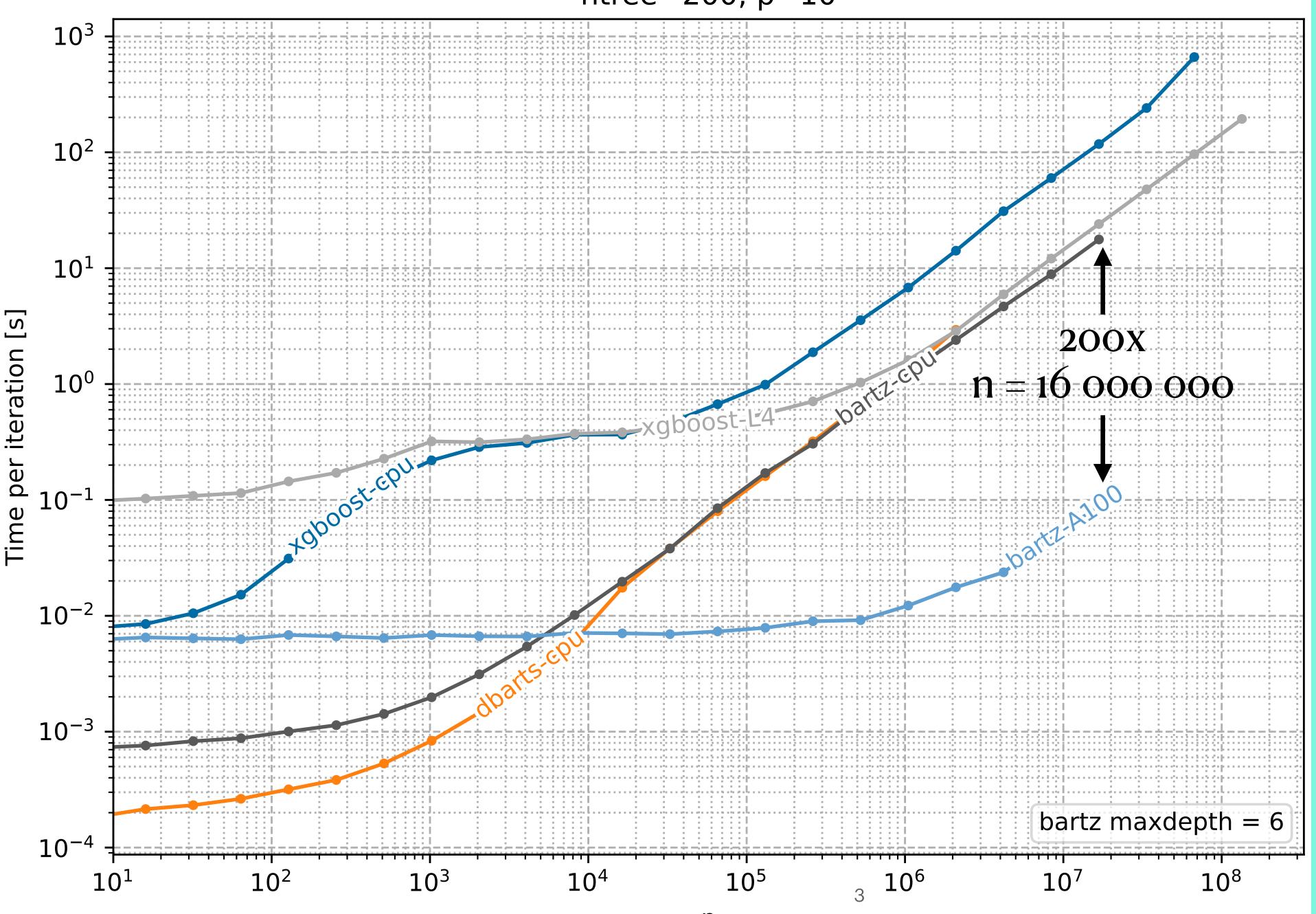
BART on GPU up to 200x faster

Giacomo Petrillo <u>giacomo.petrillo@unifi.it</u> Department of Statistics, Computer Science Applications (DISIA), University of Florence At the BART reading group, SDS UT Austin April 18, 2024

- I implemented the original BART MCMC in JAX
- It's on PyPI: pip install bartz
- (JAX is a Python library for numerical computation)
- CPU: as fast as dbarts (SoTA), uses less memory
- GPU: up to 200x faster, but depends on number of trees and sample size

ntree=200, p=10



n

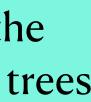
Time for one full MCMC step, at fixed number of trees and number of predictors, w.r.t. sample size

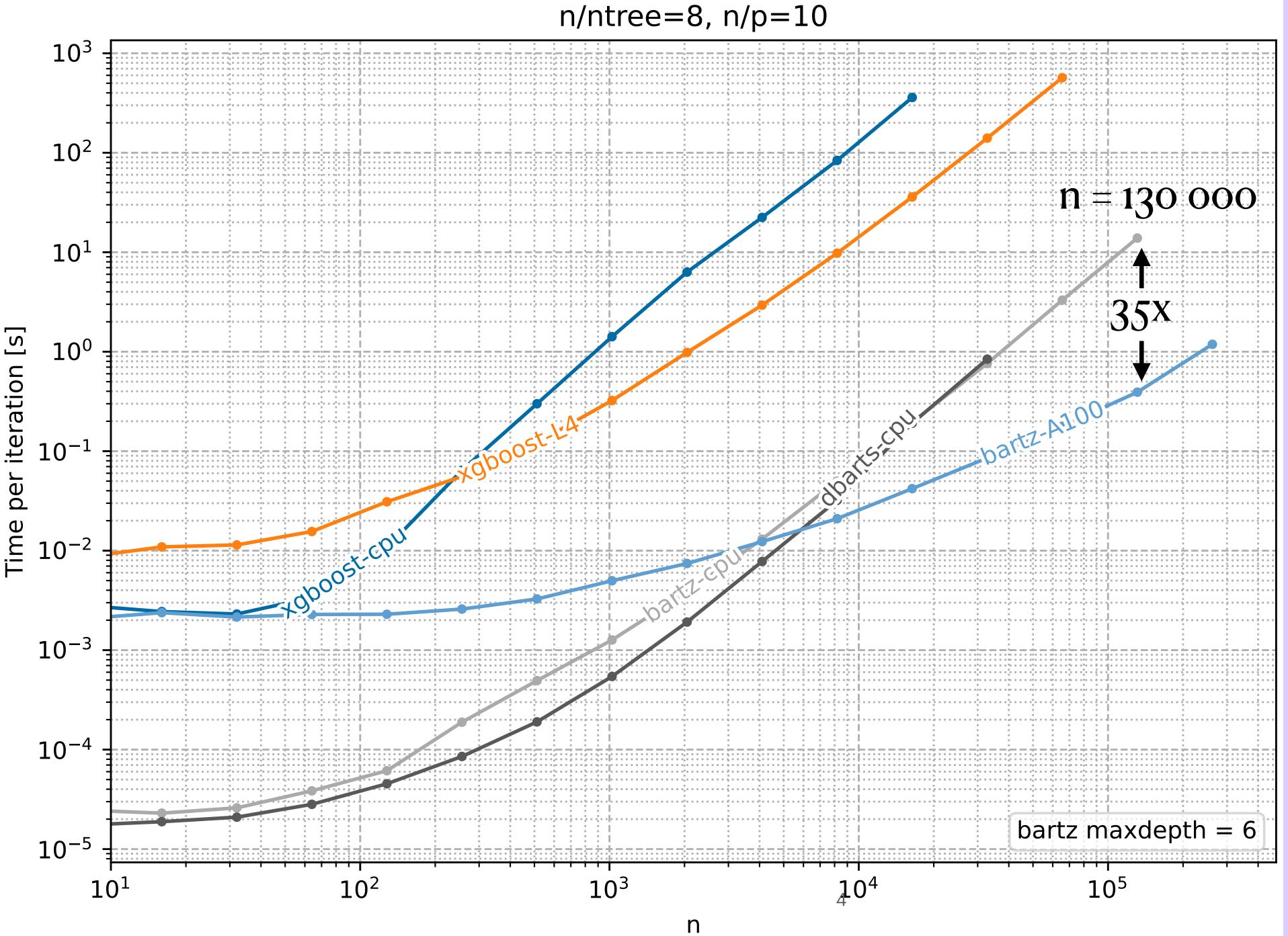
A100 = GPU you have at TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the time to construct all the trees





With *p* and ntree $\propto n$

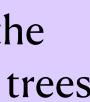
I reach lower *n* because I run out of memory

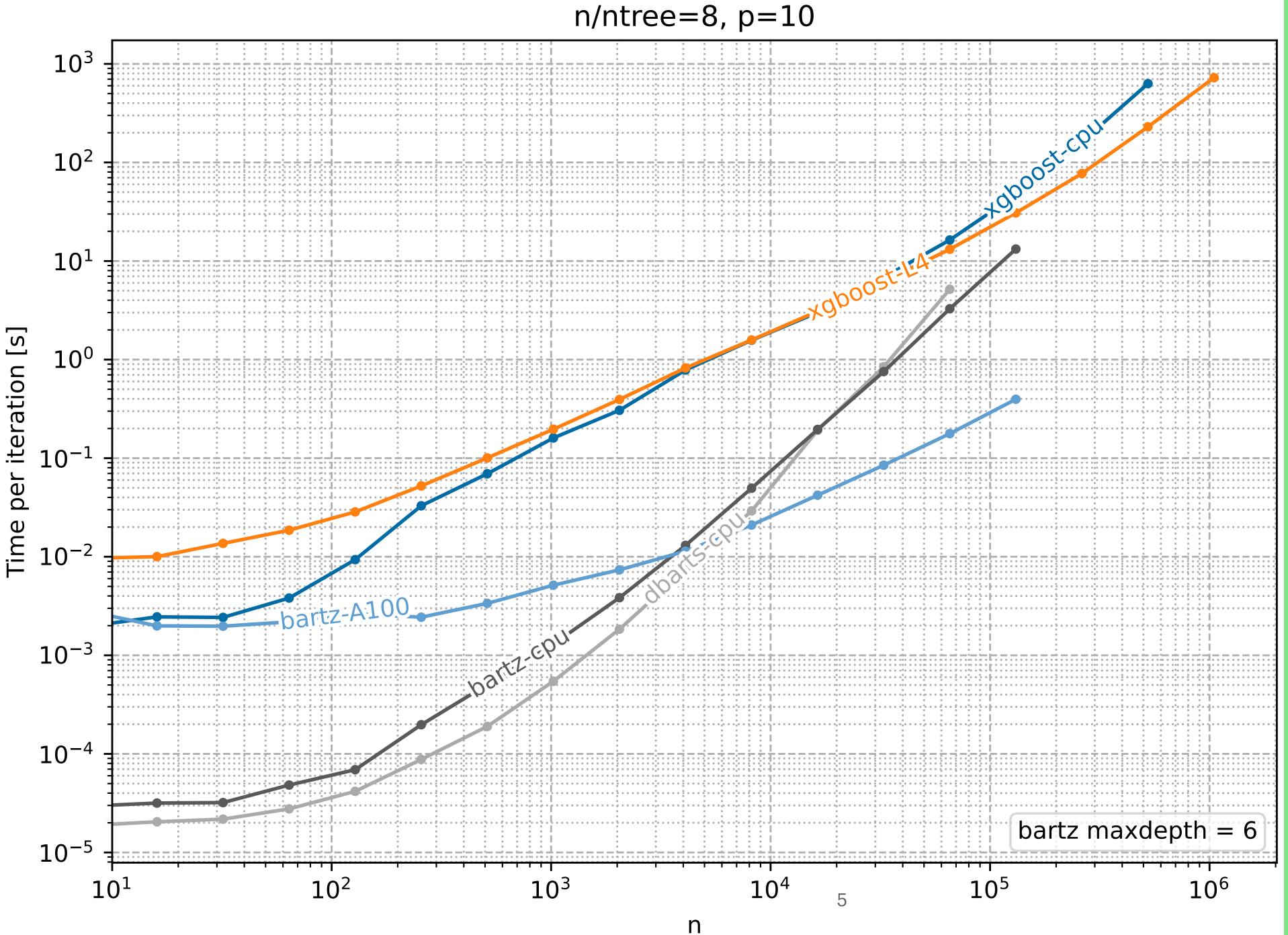
A100 = GPU you have at TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the time to construct all the trees





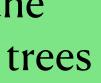
With ntree $\propto n$, fixed *p*

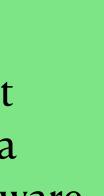
A100 = GPU you have at TACC

L4 = smaller but newer GPU

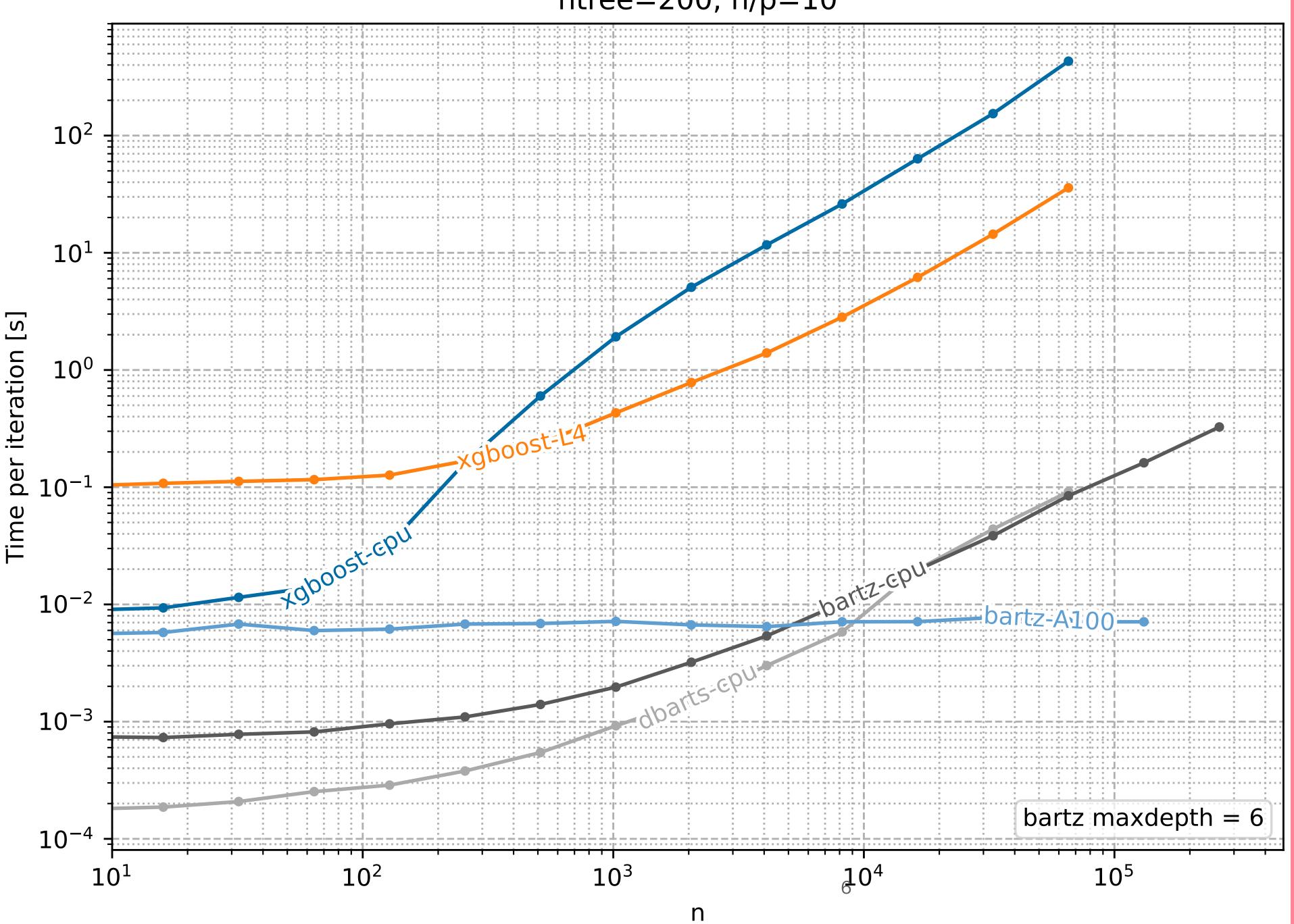
CPU = single Apple M1 core

For xgboost, I measure the time to construct all the trees





ntree=200, n/p=10



With $p \propto n$, fixed ntree

A100 = GPU you have at TACC

L4 = smaller but newer GPU

CPU = single Apple M1 core

For xgboost, I measure the time to construct all the trees

Disclaimer

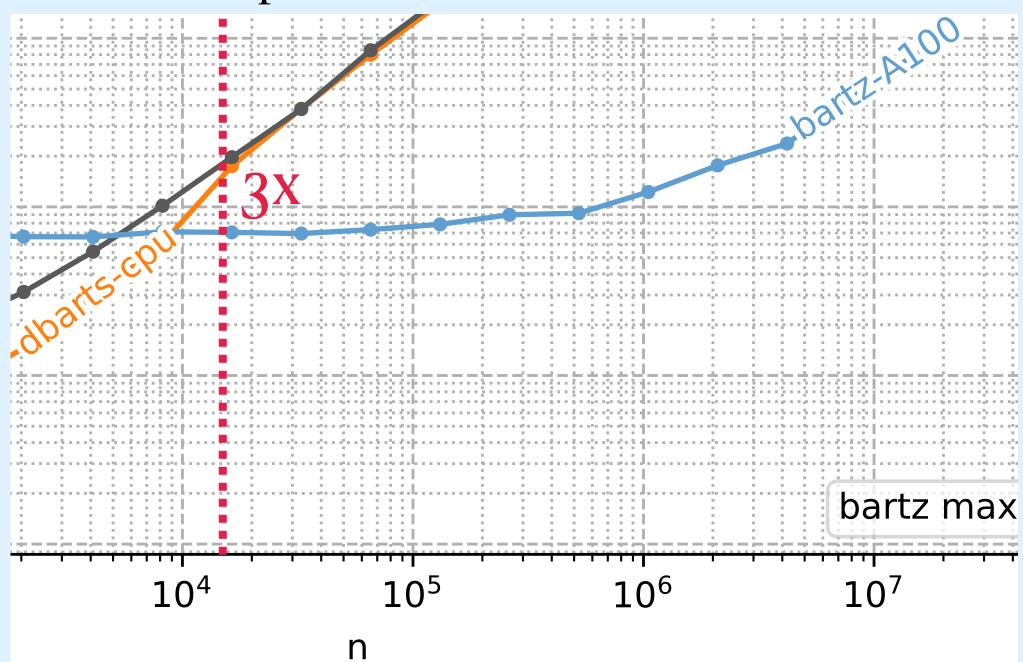
- Still not checked that the result is good at high *n* or ntree
 - Numerical accuracy problems in my implementation because I use 32 bit floats? • (Probably not significant now, easy to fix anyway)
 - Is BART a good model at high *n*?
 - How many trees should I use? I believe $\propto n$
- I test routinely at low *n* against the R package BART, it's correct there

How did I manage to make it faster?

- I wouldn't touch R/C++ with a 10 feet pole 1.
- 2. Indeed
- 3. Yes
- 4. Do I need to spell it out?

Tooling

- No, it is woefully inadequate!
- The problem I'd like to work on has $p = 10\,000\,000$ binary predictors



Is this enough?

Implementation details

Branchless

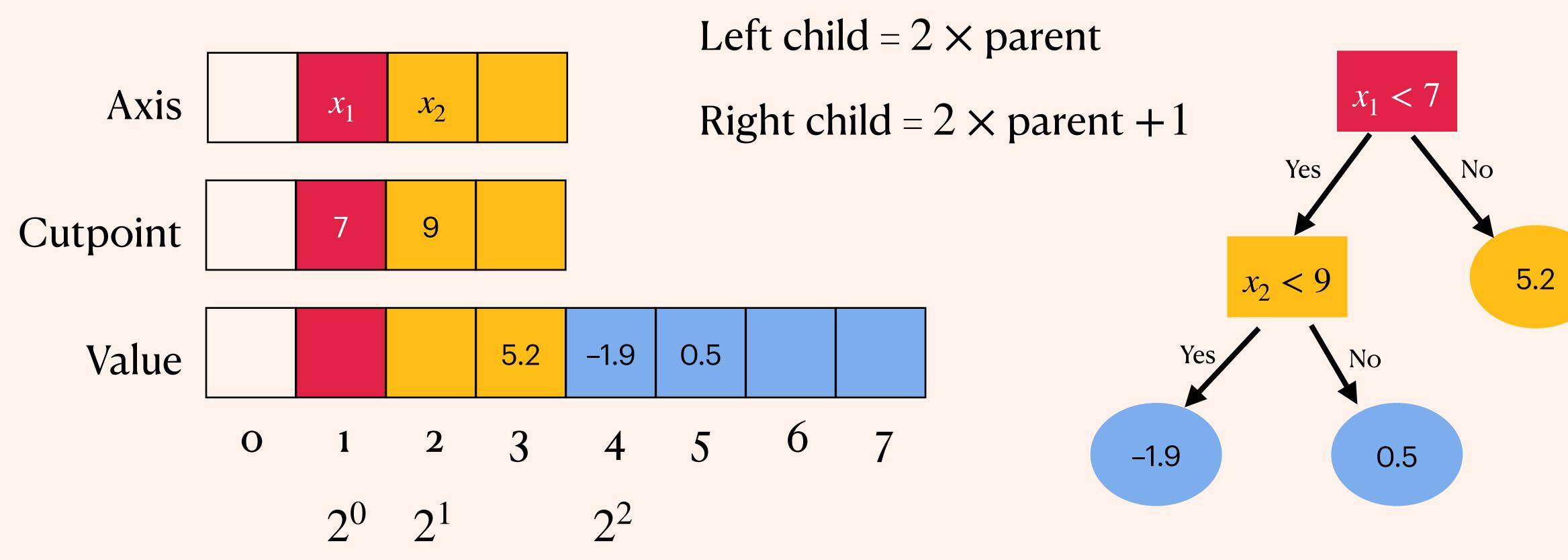
- Branchless = the algorithm always does the same sequence of operations, irrespective of the inputs
- E.g., if a leaf has depth 2, I still traverse a fixed maximum number of levels to arrive at it
- E.g., if I split a leaf in a tree, I recompute the datapoint partition for all other leaves

Why branchless?

- Parallelize automatically on GPU
- Even on CPU, it's good:
 - Doesn't disrupt the pipeline
 - Vectorization
 - Predictable memory access
 - (Getting things from RAM is the slowest operation)

• (Pipeline = the CPU starts the next instruction before finishing the current one, this is broken if the next instruction depends on the result of the previous)

Tree representation



Tree traverse (sorting datapoints into leaves)

- Big ntree $\times n$ matrix of indices
- M_{ti} = index of leaf containing point *i* in tree *t*
- If max tree depth ≤ 8 , requires one byte per element
- At $n = 100\,000$, ntree = $10\,000$, it's 1 GB

datapoint

tree

Tree sampling step outline **Parallel part**

- For all trees at once:
 - Propose a grow or prune move (grow = make two new leaves, prune = remove two leaves)
 - Where grow, update the leaf indices to represent the grow move
 - Count the number of points per leaf
 - Compute the posterior variance
 - Sample centered leaf values
 - Compute most of the Metropolis ratio terms

Tree sampling step outline **Sequential part**

- One tree at a time:
 - Sum the residuals in each leaf (SLOOOOOW)
 - Subtract the old leaf values from the sum of residuals
 - Finish MH ratio calculation
 - Accept/reject move
 - Add posterior mean to new leaves
 - Add new leaves to residuals

Bottleneck **Slowest part of the algorithm**

- Summing residuals
 - I can't really parallelize it across trees
 - It doesn't parallelize enough within a single tree if n is not high (see slide 3)
 - Makes the running time O(ntree) at smallish n (see slide 4)
 - This operation is called *indexed reduce*
 - It's *memory-bound*: I do a simple operation on many elements, so the bottleneck is fetching the elements, not the operation
 - This means float 16 does a 2x respect to float 32, not 10x

Ideas to parallelize across trees?

Links

- <u>https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Tesla</u>
- <u>https://github.com/Gattocrucco/bartz</u> (has documentation)
- If you want to use this and need a feature, open an issue: https://github.com/Gattocrucco/bartz/issues
- Example on Colab, if you don't have a local GPU: <u>https://colab.research.google.com/</u> <u>drive/1BHI_NnhoVY-cUvCe5Topub4mgnOkGGO5?usp=sharing</u>

